CHAPTER 6 Planetary Solitary Waves

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 6 Planetary Solitary Waves CHAPTER 6 Planetary solitary waves J.P. Boyd University of Michigan, Ann Arbor, MI, USA. Abstract This chapter describes solitary waves in the atmosphere and ocean with diameters from perhaps a hundred kilometers to scales larger than the earth: vortices embedded in a shear zone, Rossby solitons and equatorial Kelvin solitary waves among others. One theme is that while nonlinear coherent structures are readily identified in both observations and numerical models, it is difficult to determine when these have the balance of dispersion and nonlinear frontogenesis that is central to classical soliton theory, and also unclear whether the quest for this balance is illuminating. A second theme is that periodic trains of vortices should be regarded as solitary waves, but usually are not, because the vortices are dynamically isolated even though they are geographically close. A third theme is the generalization to radiating or weakly nonlocal solitary waves: all solitons slowly decay by viscosity (in nature if not always in theory), so it is foolish to exclude coherent structures that have in addition an even slower decay through radiation. No observation of a large nonlinear coherent structure has been universally accepted as a soliton large enough in scale to feel Coriolis forces. The reasons may have more to do with overly narrow concepts of a ‘solitary wave’ than to a lack of data. The Great Red Spot of Jupiter and Legeckis eddies in the terrestrial equatorial ocean are well-known vortices for which an appropriately broad notion of solitons is probably useful. In contrast, hurricanes, although nonlinear coherent structures, are so strongly forced and damped that it is these mechanisms and also the complex feedback from the cloud scale to the vortex scale and back that are rightly the focus, and not the ideas of soliton theory. 1 Introduction Persistent, spatially localized structures are a ubiquitous feature of the ocean and atmosphere and of the atmospheres of other planets. Vortices with diameters of a WIT Transactions on State of the Art in Science and Engineering, Vol 9, © 2007 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) doi:10.2495/978-1-84564-157-3/06 126 Solitary Waves in Fluids couple of thousand kilometers or so are the heart of large-scale weather patterns in the midlatitudes. Gulf Stream rings are intense ocean vortices, lasting for many months, or even years, that are spawned by the Gulf Stream, the oceanic equivalent of hurricanes. The Great Red Spot of Jupiter is an anticyclonic vortex that has been spinning for at least three centuries, so vast that Earth would fit comfortably within it. Long-lived, spatially localized structures of large scale or planetary scale are clearly of great importance. Consequently, so much has been written about Rossby vortices and coherent structures, as catalogued in the books and reviews of Table 1, that it is impossible to give a complete treatment in a brief space. Indeed, an entire monograph has Table 1: Selected reviews, monographs and special issues on Rossby solitary waves and coherent vortices. Topics, always including Rossby Reference solitons and vortices Miles (1980) Solitary waves including Rossby solitons Malanotte Rizzoli (1982) Rossby solitons in channels Ho and Huerre (1984) Perturbed free shear layers McWilliams (1985) Small-scale (submesoscale) ocean vortices Maslowe (1986) Critical layers in shear flows Flierl (1987) Ocean vortices Boyd (1989a) Polycnoidal waves; Rossby solitons Nihoul and Jamart (1989) Conference proceedings on ocean vortices Hopfinger and van Heijst (1991) Laboratory experiments on solitons and modons Boyd (1991a) Nonlinear equatorial waves Boyd (1991b) Weakly nonlocal solitary waves Boyd and Haupt (1991) Polycnoidal waves Olson (1991) Observations of ocean vortices Sommeria et al. (1991) Laboratory experiments Meleshko and van Heijst (1992) Chaplygin and Lamb’s discovery of modons Nezlin and Snezhkin (1993) Monograph on Rossby vortices and solitons Nezlin and Sutyrin (1994) Vortices on gas giant planets Marcus (1993) Great Red Spot of Jupiter Chaos, vol. 4 (1994) Special issue on coherent structures Korotaev (1997) Weakly nonlocal Rossby vortex solitons Boyd (1998b) Nonlocal, radiating solitary waves – one chapter on Rossby solitons Ingersoll (1999, 2002) Good images of outer planet vortices Barcilon and Drazin (2001) Nonlinear vorticity waves Carton (2001) Ocean vortices Vasavada and Showman (2005) Jovian dynamics; Great Red Spot WIT Transactions on State of the Art in Science and Engineering, Vol 9, © 2007 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) Solitary Waves in Fluids 127 already been devoted to the subject (Nezlin and Snezhkin 1993). There are literally hundreds of interesting articles that cannnot be discussed here because of space limitations. Instead, we will concentrate on a handful of major themes, important both to solitary wave theory in general and to Rossby solitons in particular. In a long review focused entirely on Rossby solitons, Paola Rizzoli wrote in 1982: ...unambiguous experimental evidence has not yet been produced for the exis- tence of solitary Rossby waves, either in the ocean or in the atmosphere. Nearly a quarter of a century later, this is still true: there are no universally-accepted observations of Rossby solitary waves. There are, however, many promising candi- dates as discussed below. In part, the lack of accepted soliton sightings is because the historical development of ‘soliton theory’ has led to definitions and mental models that are too narrow. In the next three sections, we elaborate on this theme. 2 Coherent structures and solitons Solitary waves are a subset of a much larger family of ‘coherent structures’. The formal definitions of each are as follows: Definition 1 (Coherent structure): a steadily translating, finite-amplitude, spa- tially localized disturbance that does not evolve in time, or evolves only slowly. Definition 2 (Solitary wave): a solitary wave, also known as a ‘soliton’, is a coherent structure that does not evolve in time because of a perfect balance between the steepening effects of nonlinearity and the spreading effects of wave dispersion. The crucial distinction is that in the classical theories of solitary waves, such as those of the Korteweg–de Vries equation, the longevity and persistence of ampli- tude, speed and shape are attributed to a specific mechanism: the balance between nonlinearity and dispersion. The complication is that vortices and other coherent structures can have many of the characteristics of solitary waves without sharing this steepening-balances-dispersion mechanism. Two-dimensional turbulence in an incompressible fluid without Coriolis forces is perhaps the clearest illustration. McWilliams (1984) showed that an initial state, which is filled with many small vortices of random amplitudes and phases will spontaneously evolve to a state with a few vortices, separated by large gulfs free of organized vortices, through repeated vortex mergers. Twenty years later, he observed (McWilliams 2004: p. 38): The most important change [in our understanding of turbulence] is the realization that the generic behaviour of turbulence is the development of coherent structures at high-Re values. The case for this was first and best made in 2D turbulence because of its computational affordability; however, this phenomenon has since been confirmed in many turbulent regimes, albeit with different typical flow patterns in different regimes. WIT Transactions on State of the Art in Science and Engineering, Vol 9, © 2007 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) 128 Solitary Waves in Fluids Two-dimensional incompressible turbulence is an extreme illustration of coherent- structures-that-are-not-solitary-waves because the equations of motion are com- pletely wave-free. There are no sound waves because the fluid is incompressible, no gravity waves because there are no buoyancy forces, and no Rossby waves because there are no Coriolis forces. Nevertheless, coherent structures – McWilliam’s ‘long- lived, isolated, axisymmetric monopole’ vortices – spontaneously emerge as illus- trated in Fig. 1. Table 2 catalogues the many similarities between disc-shaped or elliptical- shaped vortices (in two dimensions) or cylindrical or elliptic-cylindrical vortices (in three dimensions), and solitary waves. Even more dramatically, hurricanes and typhoons have similarities to solitons: they are strongly nonlinear, emerge spontaneously from initial conditions very different from the final structure, are Initial t=50 2 2 y 0 y 0 -2 -2 -2 0 2 -2 0 2 x x Figure 1: Contour plots of the vorticity for typical two-dimensional turbulence at the initial time (left) and at t = 50 (right). Positive-valued isolines are solid; negative contours are dashed. Table 2: Properties of vortices and solitary waves. Property Solitary wave Coherent vortices Spatially localized Yes Yes No time evolution except for Yes Yes steady translation and collisions and near-collisions Form spontaneously from highly Yes Yes nonsolitonic or noncoherent structure initial conditions Nonlinearity essential Yes Yes Balance between nonlinearity and Yes Sometimes dispersion WIT Transactions on State of the Art in Science and Engineering, Vol 9, © 2007 WIT Press www.witpress.com, ISSN 1755-8336 (on-line) Solitary Waves in Fluids 129 spatially localized and are immortal in the absence of interactions. (For hurricanes, landfall is fatal because this chokes off the supply of moist surface air that sus- tains the storm; on an ‘aqua planet’, free of land, a hurricane could spin and roar forever.) Why aren’t hurricanes classed as solitary waves? How can Rizzoli’s claim of ‘unambiguous experimental evidence has not yet been produced’be made without laughing? The answer is partly pragmatism and partly history. The pragmatism is that although there indeed have been a few papers that have identified hurricanes as solitons, or at least linked the storm with the concept (Zhao et al. 2001), a hurricane is both strongly forced and strongly dissipative. The latent heat forcing is what makes hurricanes so powerful; the equally strong damping is why hurri- canes die quickly after landfall when the forcing is choked off.
Recommended publications
  • An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation M
    Brigham Young University BYU ScholarsArchive 6th International Congress on Environmental International Congress on Environmental Modelling and Software - Leipzig, Germany - July Modelling and Software 2012 Jul 1st, 12:00 AM An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation M. A. Badri Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference Badri, M. A., "An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation" (2012). International Congress on Environmental Modelling and Software. 323. https://scholarsarchive.byu.edu/iemssconference/2012/Stream-B/323 This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.) http://www.iemss.org/society/index.php/iemss-2012-proceedings ١ ٢ ٣ ٤ An Application of Kelvin Wave Expansion ٥ to Model Flow Pattern Using in Oil Spill ٦ Simulation ٧ ٨ 1 M.A. Badri ٩ Subsea R&D center, P.O.Box 134, Isfahan University of Technology, Isfahan, Iran ١٠ [email protected] ١١ ١٢ ١٣ Abstract: In this paper, data of tidal constituents from co-tidal charts are invoked to ١٤ determine water surface level and velocity.
    [Show full text]
  • Fourth-Order Nonlinear Evolution Equations for Surface Gravity Waves in the Presence of a Thin Thermocline
    J. Austral. Math. Soc. Ser. B 39(1997), 214-229 FOURTH-ORDER NONLINEAR EVOLUTION EQUATIONS FOR SURFACE GRAVITY WAVES IN THE PRESENCE OF A THIN THERMOCLINE SUDEBI BHATTACHARYYA1 and K. P. DAS1 (Received 14 August 1995; revised 21 December 1995) Abstract Two coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth. 1. Introduction There exist a number of papers on nonlinear interaction between surface gravity waves and internal waves. Most of these are concerned with the mechanism of generation of internal waves through nonlinear interaction of surface gravity waves. Coherent three wave interactions of two surface waves and one internal wave have been investigated by Ball [1], Thorpe [22], Watson, West and Cohen [23] and others. Using the theoretical model of Hasselman [12] for incoherent three-wave interaction, Olber and Hertrich [18] have reported a mechanism of generation of internal waves by coupling with surface waves using a three-layer model of the ocean.
    [Show full text]
  • Internal Gravity Waves: from Instabilities to Turbulence Chantal Staquet, Joël Sommeria
    Internal gravity waves: from instabilities to turbulence Chantal Staquet, Joël Sommeria To cite this version: Chantal Staquet, Joël Sommeria. Internal gravity waves: from instabilities to turbulence. Annual Review of Fluid Mechanics, Annual Reviews, 2002, 34, pp.559-593. 10.1146/an- nurev.fluid.34.090601.130953. hal-00264617 HAL Id: hal-00264617 https://hal.archives-ouvertes.fr/hal-00264617 Submitted on 4 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License INTERNAL GRAVITY WAVES: From Instabilities to Turbulence C. Staquet and J. Sommeria Laboratoire des Ecoulements Geophysiques´ et Industriels, BP 53, 38041 Grenoble Cedex 9, France; e-mail: [email protected], [email protected] Key Words geophysical fluid dynamics, stratified fluids, wave interactions, wave breaking Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steep- ening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented.
    [Show full text]
  • Waves on Deep Water, I
    Lecture 14: Waves on deep water, I Lecturer: Harvey Segur. Write-up: Adrienne Traxler June 23, 2009 1 Introduction In this lecture we address the question of whether there are stable wave patterns that propagate with permanent (or nearly permanent) form on deep water. The primary tool for this investigation is the nonlinear Schr¨odinger equation (NLS). Below we sketch the derivation of the NLS for deep water waves, and review earlier work on the existence and stability of 1D surface patterns for these waves. The next lecture continues to more recent work on 2D surface patterns and the effect of adding small damping. 2 Derivation of NLS for deep water waves The nonlinear Schr¨odinger equation (NLS) describes the slow evolution of a train or packet of waves with the following assumptions: • the system is conservative (no dissipation) • then the waves are dispersive (wave speed depends on wavenumber) Now examine the subset of these waves with • only small or moderate amplitudes • traveling in nearly the same direction • with nearly the same frequency The derivation sketch follows the by now normal procedure of beginning with the water wave equations, identifying the limit of interest, rescaling the equations to better show that limit, then solving order-by-order. We begin by considering the case of only gravity waves (neglecting surface tension), in the deep water limit (kh → ∞). Here h is the distance between the equilibrium surface height and the (flat) bottom; a is the wave amplitude; η is the displacement of the water surface from the equilibrium level; and φ is the velocity potential, u = ∇φ.
    [Show full text]
  • The Internal Gravity Wave Spectrum: a New Frontier in Global Ocean Modeling
    The internal gravity wave spectrum: A new frontier in global ocean modeling Brian K. Arbic Department of Earth and Environmental Sciences University of Michigan Supported by funding from: Office of Naval Research (ONR) National Aeronautics and Space Administration (NASA) National Science Foundation (NSF) Brian K. Arbic Internal wave spectrum in global ocean models Collaborators • Naval Research Laboratory Stennis Space Center: Joe Metzger, Jim Richman, Jay Shriver, Alan Wallcraft, Luis Zamudio • University of Southern Mississippi: Maarten Buijsman • University of Michigan: Joseph Ansong, Steve Bassette, Conrad Luecke, Anna Savage • McGill University: David Trossman • Bangor University: Patrick Timko • Norwegian Meteorological Institute: Malte M¨uller • University of Brest and The University of Texas at Austin: Rob Scott • NASA Goddard: Richard Ray • Florida State University: Eric Chassignet • Others including many members of the NSF-funded Climate Process Team led by Jennifer MacKinnon of Scripps Brian K. Arbic Internal wave spectrum in global ocean models Motivation • Breaking internal gravity waves drive most of the mixing in the subsurface ocean. • The internal gravity wave spectrum is just starting to be resolved in global ocean models. • Somewhat analogous to resolution of mesoscale eddies in basin- and global-scale models in 1990s and early 2000s. • Builds on global internal tide modeling, which began with 2004 Arbic et al. and Simmons et al. papers utilizing Hallberg Isopycnal Model (HIM) run with tidal foricng only and employing a horizontally uniform stratification. Brian K. Arbic Internal wave spectrum in global ocean models Motivation continued... • Here we utilize simulations of the HYbrid Coordinate Ocean Model (HYCOM) with both atmospheric and tidal forcing. • Near-inertial waves and tides are put into a model with a realistically varying background stratification.
    [Show full text]
  • 21 Non-Linear Wave Equations and Solitons
    Utah State University DigitalCommons@USU Foundations of Wave Phenomena Open Textbooks 8-2014 21 Non-Linear Wave Equations and Solitons Charles G. Torre Department of Physics, Utah State University, [email protected] Follow this and additional works at: https://digitalcommons.usu.edu/foundation_wave Part of the Physics Commons To read user comments about this document and to leave your own comment, go to https://digitalcommons.usu.edu/foundation_wave/2 Recommended Citation Torre, Charles G., "21 Non-Linear Wave Equations and Solitons" (2014). Foundations of Wave Phenomena. 2. https://digitalcommons.usu.edu/foundation_wave/2 This Book is brought to you for free and open access by the Open Textbooks at DigitalCommons@USU. It has been accepted for inclusion in Foundations of Wave Phenomena by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Foundations of Wave Phenomena, Version 8.2 21. Non-linear Wave Equations and Solitons. In 1834 the Scottish engineer John Scott Russell observed at the Union Canal at Hermiston a well-localized* and unusually stable disturbance in the water that propagated for miles virtually unchanged. The disturbance was stimulated by the sudden stopping of a boat on the canal. He called it a “wave of translation”; we call it a solitary wave. As it happens, a number of relatively complicated – indeed, non-linear – wave equations can exhibit such a phenomenon. Moreover, these solitary wave disturbances will often be stable in the sense that if two or more solitary waves collide then after the collision they will separate and take their original shape.
    [Show full text]
  • Gravity Waves Are Just Waves As Pressure He Was Observing
    FLIGHTOPS Nearly impossible to predict and difficult to detect, this weather phenomenon presents Gravitya hidden risk, especially close to the ground. regory Bean, an experienced pi- National Weather Service observer re- around and land back at Burlington. lot and flight instructor, says he ferred to this as a “gravity wave.” Neither The wind had now swung around to wasn’t expecting any problems the controller nor Bean knew what the 270 degrees at 25 kt. At this point, he while preparing for his flight weather observer was talking about. recalled, his rate of descent became fromG Burlington, Vermont, to Platts- Deciding he could deal with the “alarming.” The VSI now pegged at the burgh, New York, U.S. His Piper Seneca wind, Bean was cleared for takeoff. The bottom of the scale. Despite the control checked out fine. The weather that April takeoff and initial climb were normal difficulty, he landed the aircraft without evening seemed benign. While waiting but he soon encountered turbulence “as further incident. Bean may not have for clearance, he was taken aback by a rough as I have ever encountered.” He known what a gravity wave was, but report of winds gusting to 35 kt from wanted to climb to 2,600 ft. With the he now knew what it could do to an 140 degrees. The air traffic control- vertical speed indicator (VSI) “pegged,” airplane.1 ler commented on rapid changes in he shot up to 3,600 ft. Finally control- Gravity waves are just waves as pressure he was observing. He said the ling the airplane, Bean opted to turn most people normally think of them.
    [Show full text]
  • Gravity Wave and Tidal Influences On
    Ann. Geophys., 26, 3235–3252, 2008 www.ann-geophys.net/26/3235/2008/ Annales © European Geosciences Union 2008 Geophysicae Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx) D. C. Fritts1, S. L. Vadas1, D. M. Riggin1, M. A. Abdu2, I. S. Batista2, H. Takahashi2, A. Medeiros3, F. Kamalabadi4, H.-L. Liu5, B. G. Fejer6, and M. J. Taylor6 1NorthWest Research Associates, CoRA Division, Boulder, CO, USA 2Instituto Nacional de Pesquisas Espaciais (INPE), San Jose dos Campos, Brazil 3Universidade Federal de Campina Grande. Campina Grande. Paraiba. Brazil 4University of Illinois, Champaign, IL, USA 5National Center for Atmospheric research, Boulder, CO, USA 6Utah State University, Logan, UT, USA Received: 15 April 2008 – Revised: 7 August 2008 – Accepted: 7 August 2008 – Published: 21 October 2008 Abstract. The Spread F Experiment, or SpreadFEx, was per- Keywords. Ionosphere (Equatorial ionosphere; Ionosphere- formed from September to November 2005 to define the po- atmosphere interactions; Plasma convection) – Meteorology tential role of neutral atmosphere dynamics, primarily grav- and atmospheric dynamics (Middle atmosphere dynamics; ity waves propagating upward from the lower atmosphere, in Thermospheric dynamics; Waves and tides) seeding equatorial spread F (ESF) and plasma bubbles ex- tending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, 1 Introduction and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of The primary goal of the Spread F Experiment (SpreadFEx) neutral atmosphere and ionosphere dynamics and structure was to test the theory that gravity waves (GWs) play a key described in this special issue provide enticing evidence of role in the seeding of equatorial spread F (ESF), Rayleigh- gravity waves arising from deep convection in plasma bub- Taylor instability (RTI), and plasma bubbles extending to ble seeding at the bottomside F layer.
    [Show full text]
  • Inertia-Gravity Wave Generation: a WKB Approach
    Inertia-gravity wave generation: a WKB approach Jonathan Maclean Aspden Doctor of Philosophy University of Edinburgh 2010 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Jonathan Maclean Aspden) iii iv Abstract The dynamics of the atmosphere and ocean are dominated by slowly evolving, large-scale motions. However, fast, small-scale motions in the form of inertia-gravity waves are ubiquitous. These waves are of great importance for the circulation of the atmosphere and oceans, mainly because of the momentum and energy they transport and because of the mixing they create upon breaking. So far the study of inertia-gravity waves has answered a number of questions about their propagation and dissipation, but many aspects of their generation remain poorly understood. The interactions that take place between the slow motion, termed balanced or vortical motion, and the fast inertia-gravity wave modes provide mechanisms for inertia-gravity wave generation. One of these is the instability of balanced flows to gravity-wave-like perturbations; another is the so-called spontaneous generation in which a slowly evolving solution has a small gravity-wave component intrinsically coupled to it. In this thesis, we derive and study a simple model of inertia-gravity wave generation which considers the evolution of a small-scale, small amplitude perturbation superimposed on a large-scale, possibly time-dependent flow. The assumed spatial-scale separation makes it possible to apply a WKB approach which models the perturbation to the flow as a wavepacket.
    [Show full text]
  • Kelvin/Rossby Wave Partition of Madden-Julian Oscillation Circulations
    climate Article Kelvin/Rossby Wave Partition of Madden-Julian Oscillation Circulations Patrick Haertel Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA; [email protected] Abstract: The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component. Keywords: Madden Julian Oscillation; equatorial Rossby wave; equatorial Kelvin wave Citation: Haertel, P.
    [Show full text]
  • Shallow Water Waves and Solitary Waves Article Outline Glossary
    Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, USA Article Outline Glossary I. Definition of the Subject II. Introduction{Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave is said to be in shallow water if its wavelength is much larger than the local water depth. Shallow water waves Shallow water waves correspond to the flow at the free surface of a body of shallow water under the force of gravity, or to the flow below a horizontal pressure surface in a fluid. Shallow water wave equations Shallow water wave equations are a set of partial differential equations that describe shallow water waves. 1 Solitary wave A solitary wave is a localized gravity wave that maintains its coherence and, hence, its visi- bility through properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with constant speed and constant shape. Soliton Solitons are solitary waves that have an elastic scattering property: they retain their shape and speed after colliding with each other.
    [Show full text]
  • Chapter 16: Waves [Version 1216.1.K]
    Contents 16 Waves 1 16.1Overview...................................... 1 16.2 GravityWavesontheSurfaceofaFluid . ..... 2 16.2.1 DeepWaterWaves ............................ 5 16.2.2 ShallowWaterWaves........................... 5 16.2.3 Capillary Waves and Surface Tension . .... 8 16.2.4 Helioseismology . 12 16.3 Nonlinear Shallow-Water Waves and Solitons . ......... 14 16.3.1 Korteweg-deVries(KdV)Equation . ... 14 16.3.2 Physical Effects in the KdV Equation . ... 16 16.3.3 Single-SolitonSolution . ... 18 16.3.4 Two-SolitonSolution . 19 16.3.5 Solitons in Contemporary Physics . .... 20 16.4 RossbyWavesinaRotatingFluid. .... 22 16.5SoundWaves ................................... 25 16.5.1 WaveEnergy ............................... 27 16.5.2 SoundGeneration............................. 28 16.5.3 T2 Radiation Reaction, Runaway Solutions, and Matched Asymp- toticExpansions ............................. 31 0 Chapter 16 Waves Version 1216.1.K, 7 Sep 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 16.1 Reader’s Guide This chapter relies heavily on Chaps. 13 and 14. • Chap. 17 (compressible flows) relies to some extent on Secs. 16.2, 16.3 and 16.5 of • this chapter. The remaining chapters of this book do not rely significantly on this chapter. • 16.1 Overview In the preceding chapters, we have derived the basic equations of fluid dynamics and devel- oped a variety of techniques to describe stationary flows. We have also demonstrated how, even if there exists a rigorous, stationary solution of these equations for a time-steady flow, instabilities may develop and the amplitude of oscillatory disturbances will grow with time. These unstable modes of an unstable flow can usually be thought of as waves that interact strongly with the flow and extract energy from it.
    [Show full text]