An Introduction to Internal Waves

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Internal Waves An introduction to internal waves T. Gerkema J.T.F. Zimmerman Lecture notes, Royal NIOZ, Texel, 2008 Por qu¶eme preguntan las olas lo mismo que yo les pregunto? Qui¶enpuede convencer al mar para que sea razonable? Pablo Neruda, El libro de las preguntas. Contents 1 Introduction 9 1.1 The ocean's inner unrest . 9 1.2 Restoring forces . 12 1.2.1 The ocean's strati¯cation . 13 1.2.2 The Earth's diurnal rotation . 14 1.3 Origins of internal waves . 16 1.4 Dissipation and mixing . 19 1.5 Overview . 20 Further reading . 21 2 The equations of motion 23 2.1 Introduction . 23 2.2 Fluid mechanics . 24 2.3 A brief introduction to thermodynamics . 26 2.3.1 Fundamentals . 26 2.3.2 Open systems . 28 2.3.3 Some de¯nitions . 29 2.3.4 The Gibbs potential and the equation of state . 30 2.4 Complete set of governing equations . 31 2.5 Internal-wave dynamics . 34 Further reading . 35 Appendix A: a closer look at the Coriolis Force . 36 Appendix B: sound waves . 37 3 Local static stability 39 3.1 The buoyancy frequency . 39 3.2 N in terms of density . 41 3.3 N in terms of temperature and salinity . 42 3.4 A practical example . 43 3.5 Special types of strati¯cation . 44 3.5.1 A fluid in thermodynamic equilibrium . 45 3.5.2 A turbulently mixed fluid . 46 3.6 Potential density . 47 3.6.1 Generalized potential density . 47 5 3.6.2 The common concept of potential density . 48 3.7 Limitations of the concept of local stability . 49 4 Approximations 51 4.1 Introductory remarks . 51 4.2 Overview . 52 4.3 Quasi-incompressibility . 53 4.3.1 Momentum equations . 53 4.3.2 Mass and energy equations . 55 4.3.3 Resulting equations . 57 4.4 The `Traditional Approximation' . 58 4.5 Linearization . 59 4.5.1 Resulting equations . 60 4.5.2 Energy equation . 61 4.6 Rigid-lid approximation . 62 4.7 Preview: methods of solution . 64 5 Internal-wave propagation I: method of vertical modes 67 5.1 General formulation . 67 5.1.1 Oscillatory versus exponential behaviour . 68 5.1.2 Orthogonality . 69 5.1.3 Hydrostatic approximation . 70 5.2 Uniform strati¯cation . 70 5.2.1 Dispersion relation . 71 5.2.2 Modal structure . 74 5.2.3 Superposition of modes . 77 5.3 Varying N: two layers . 78 5.3.1 Refraction and internal reflection . 80 5.3.2 Trapping of high-frequency waves (! > jfj) . 82 5.3.3 Trapping of low-frequency waves (! < jfj) . 82 5.4 A simple model for the ocean's strati¯cation . 84 5.4.1 Dispersion relation and vertical modes . 85 5.4.2 Scattering at the thermocline . 87 5.4.3 Interfacial waves . 88 5.5 Linearly varying N 2: Airy functions . 91 5.6 Non-traditional e®ects . 93 5.6.1 Frequency range . 95 5.6.2 Dispersion relation for constant N . 96 5.6.3 Expressions of other ¯elds . 97 5.6.4 Superposition of modes . 98 Appendix: the delta-distribution . 99 6 Internal wave-propagation II: method of characteristics 101 6.1 Basic properties of internal waves . 101 6.1.1 Dispersion relation and corollaries . 101 6.1.2 General solution . 104 6.1.3 Kinetic and potential energy . 105 6.2 Reflection from a sloping bottom . 106 6.3 Propagation between two horizontal boundaries . 108 6.4 Three-dimensional reflection . 109 6.5 Non-uniform strati¯cation . 111 6.5.1 WKB approximation . 112 6.5.2 Characteristic coordinates . 114 6.6 Non-traditional e®ects . 114 7 Internal tides 119 7.1 Barotropic tides . 119 7.2 Boundary vs. body forcing . 124 7.3 Generation over a step-topography . 126 7.4 Solutions for in¯nitesimal topography . 130 7.4.1 Uniform strati¯cation . 132 7.4.2 Three-layer model . 134 7.4.3 Interfacial tides . 137 7.5 Energetics and conversion rates . 139 Appendix A: Integral expressions I . 143 Appendix B: Integral expressions II . 143 8 Internal solitons 145 8.1 Observations . 145 8.2 Korteweg-de Vries (KdV) equation . 147 8.2.1 E®ect of nonlinearity . 148 8.2.2 E®ect of dispersion . 151 8.2.3 KdV for interfacial waves . 152 8.2.4 A heuristic `derivation' . 152 8.2.5 Soliton solution . 153 8.3 Derivation of the KdV equation . 157 8.3.1 Basic equations . 157 8.3.2 Scaling and small parameters . 159 8.3.3 Lowest order . 161 8.3.4 Next order . 162 8.3.5 Final result . 164 8.4 Inverse-scattering theory . 164 8.4.1 The scattering problem . 165 8.4.2 The meaning of the discrete spectrum . 168 8.4.3 Calculation of the number of emerging solitons . 169 8.5 Internal tides and solitons . 171 8.5.1 Disintegration of an interfacial tide . 172 8.5.2 'Local generation' by internal-tide beams . 174 8.5.3 Decay and dissipation . 175 8.6 Limitations of KdV . 176 Further reading . 179 Appendix: Form-preserving solutions of the extended KdV equation . 180 9 Miscellaneous topics 183 9.1 Internal-wave attractors . 183 9.1.1 Vertical wall . 185 9.1.2 Slope . 186 9.1.3 Discussion . 186 9.2 Nonlinear e®ects { or the absence thereof: general remarks . 188 9.3 Generation of higher harmonics . 190 9.3.1 Formulation of the problem . 190 9.3.2 General solution . 192 9.3.3 Solutions for reflection from a uniform slope . 194 9.3.4 Examples . 195 9.4 Wave-wave interactions . 195 9.5 Internal-wave spectra . 197 Bibliography 201 8 Chapter 1 Introduction Waves are all around us, but it is actually hard to say what a wave is. This is be- cause it is an immaterial thing: a signal, a certain amount of energy propagating through a medium. The medium we consider is water, seawater in particular. Even though water waves as such are immaterial, they are supported by the oscillatory movement of the water parcels, and this indeed forms a way of de- tecting them. But it is always important not to confuse the water motion with the wave itself. The following analogies may help to clarify this point: \A bit of gossip starting in London reaches Edinburgh very quickly, even though not a single individual who takes part in spreading it travels be- tween these two cities. There are two quite di®erent motions involved, that of the rumour, London to Edinburgh, and that of the persons who spread the rumour. The wind, passing over a ¯eld of grain, sets up a wave which spreads out across the whole ¯eld. Here again we must distinguish between the motion of the wave and the motion of the separate plants, which undergo only small oscillations. We have all seen the waves that spread in wider and wider circles when a stone is thrown into a pool of water. The motion of the wave is very di®erent from that of the particles of water. The particles merely go up and down. The observed motion of the wave is that of a state of matter and not of matter itself. A cork floating on the wave shows this clearly, for it moves up and down in imitation of the actual motion of the water, instead of being carried along by the wave." [16, pp. 104-105] 1.1 The ocean's inner unrest Waves at the ocean's surface are a familiar sight. These lecture notes deal with waves that propagate beneath the surface; they are mostly hidden from eyesight. Occasionally, however, they produce a visible response at the ocean's surface. 9 An example is shown in Figure 1.1, a photograph taken from the Apollo-Soyuz spacecraft in 1975, when it passed over Andaman Sea, north of Sumatra. Fig. 1.1: A photograph from the Apollo-Soyuz spacecraft, made over Andaman Sea, showing stripes due to internal waves. The stripes stretch over 100 km or.
Recommended publications
  • Slow Persistent Mixing in the Abyss
    Reference: van Haren, H., 2020. Slow persistent mixing in the abyss. Ocean Dyn., 70, 339- 352. Slow persistent mixing in the abyss by Hans van Haren* Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands. *e-mail: [email protected] Abstract Knowledge about deep-ocean turbulent mixing and flow circulation above abyssal hilly plains is important to quantify processes for the modelling of resuspension and dispersal of sediments in areas where turbulence sources are expected to be relatively weak. Turbulence may disperse sediments from artificial deep-sea mining activities over large distances. To quantify turbulent mixing above the deep-ocean floor around 4000 m depth, high-resolution moored temperature sensor observations have been obtained from the near-equatorial southeast Pacific (7°S, 88°W). Models demonstrate low activity of equatorial flow dynamics, internal tides and surface near-inertial motions in the area. The present observations demonstrate a Conservative Temperature difference of about 0.012°C between 7 and 406 meter above the bottom (hereafter, mab, for short), which is a quarter of the adiabatic lapse rate. The very weakly stratified waters with buoyancy periods between about six hours and one day allow for slowly varying mixing. The calculated turbulence dissipation rate values are half to one order of magnitude larger than those from open-ocean turbulent exchange well away from bottom topography and surface boundaries. In the deep, turbulent overturns extend up to 100 m tall, in the ocean-interior, and also reach the lowest sensor. The overturns are governed by internal-wave-shear and -convection.
    [Show full text]
  • Fourth-Order Nonlinear Evolution Equations for Surface Gravity Waves in the Presence of a Thin Thermocline
    J. Austral. Math. Soc. Ser. B 39(1997), 214-229 FOURTH-ORDER NONLINEAR EVOLUTION EQUATIONS FOR SURFACE GRAVITY WAVES IN THE PRESENCE OF A THIN THERMOCLINE SUDEBI BHATTACHARYYA1 and K. P. DAS1 (Received 14 August 1995; revised 21 December 1995) Abstract Two coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth. 1. Introduction There exist a number of papers on nonlinear interaction between surface gravity waves and internal waves. Most of these are concerned with the mechanism of generation of internal waves through nonlinear interaction of surface gravity waves. Coherent three wave interactions of two surface waves and one internal wave have been investigated by Ball [1], Thorpe [22], Watson, West and Cohen [23] and others. Using the theoretical model of Hasselman [12] for incoherent three-wave interaction, Olber and Hertrich [18] have reported a mechanism of generation of internal waves by coupling with surface waves using a three-layer model of the ocean.
    [Show full text]
  • Ocean Acoustic Tomography Has Heat Content, Velocity, and Vorticity in the North Pacific Thermohaline Circulation and Climate
    B. Dushaw, G. Bold, C.-S. Chiu, J. Colosi, B. Cornuelle, Y. Desaubies, M. Dzieciuch, A. Forbes, F. Gaillard, Brian Dushaw, Bruce Howe A. Gavrilov, J. Gould, B. Howe, M. Lawrence, J. Lynch, D. Menemenlis, J. Mercer, P. Mikhalevsky, W. Munk, Applied Physics Laboratory and School of Oceanography I. Nakano, F. Schott, U. Send, R. Spindel, T. Terre, P. Worcester, C. Wunsch, Observing the Ocean in the 2000’s: College of Ocean and Fisheries Sciences A Strategy for the Role of Acoustic Tomography in Ocean Climate Observation. In: Observing the Ocean Ocean Acoustic Tomography: 1970–21st Century University of Washington Ocean Acoustic Tomography: 1970–21st Century http://staff.washington.edu/dushaw in the 21st Century, C.J. Koblinsky and N.R. Smith (eds), Bureau of Meteorology, Melbourne, Australia, 2001. ABSTRACT PROCESS EXPERIMENTS Deep Convection—Greenland and Labrador Seas ATOC—Acoustic Thermometry of Ocean Climate Oceanic convection connects the surface ocean to the deep ocean with important consequences for the global Since it was first proposed in the late 1970’s (Munk and Wunsch 1979, 1982), ocean acoustic tomography has Heat Content, Velocity, and Vorticity in the North Pacific thermohaline circulation and climate. Deep convection occurs in only a few locations in the world, and is difficult The goal of the ATOC project is to measure the ocean temperature on basin scales and to understand the evolved into a remote sensing technique employed in a wide variety of physical settings. In the context of to observe. Acoustic arrays provide both the spatial coverage and temporal resolution necessary to observe variability. The acoustic measurements inherently average out mesoscale and internal wave noise that long-term oceanic climate change, acoustic tomography provides integrals through the mesoscale and other The 1987 reciprocal acoustic tomography experiment (RTE87) obtained unique measurements of gyre-scale deep-water formation.
    [Show full text]
  • Internal Gravity Waves: from Instabilities to Turbulence Chantal Staquet, Joël Sommeria
    Internal gravity waves: from instabilities to turbulence Chantal Staquet, Joël Sommeria To cite this version: Chantal Staquet, Joël Sommeria. Internal gravity waves: from instabilities to turbulence. Annual Review of Fluid Mechanics, Annual Reviews, 2002, 34, pp.559-593. 10.1146/an- nurev.fluid.34.090601.130953. hal-00264617 HAL Id: hal-00264617 https://hal.archives-ouvertes.fr/hal-00264617 Submitted on 4 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License INTERNAL GRAVITY WAVES: From Instabilities to Turbulence C. Staquet and J. Sommeria Laboratoire des Ecoulements Geophysiques´ et Industriels, BP 53, 38041 Grenoble Cedex 9, France; e-mail: [email protected], [email protected] Key Words geophysical fluid dynamics, stratified fluids, wave interactions, wave breaking Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steep- ening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented.
    [Show full text]
  • Internal Tides in the Solomon Sea in Contrasted ENSO Conditions
    Ocean Sci., 16, 615–635, 2020 https://doi.org/10.5194/os-16-615-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Internal tides in the Solomon Sea in contrasted ENSO conditions Michel Tchilibou1, Lionel Gourdeau1, Florent Lyard1, Rosemary Morrow1, Ariane Koch Larrouy1, Damien Allain1, and Bughsin Djath2 1Laboratoire d’Etude en Géophysique et Océanographie Spatiales (LEGOS), Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France 2Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, Geesthacht, Germany Correspondence: Michel Tchilibou ([email protected]), Lionel Gourdeau ([email protected]), Florent Lyard (fl[email protected]), Rosemary Morrow ([email protected]), Ariane Koch Larrouy ([email protected]), Damien Allain ([email protected]), and Bughsin Djath ([email protected]) Received: 1 August 2019 – Discussion started: 26 September 2019 Revised: 31 March 2020 – Accepted: 2 April 2020 – Published: 15 May 2020 Abstract. Intense equatorward western boundary currents the tidal effects over a longer time. However, when averaged transit the Solomon Sea, where active mesoscale structures over the Solomon Sea, the tidal effect on water mass transfor- exist with energetic internal tides. In this marginal sea, the mation is an order of magnitude less than that observed at the mixing induced by these features can play a role in the ob- entrance and exits of the Solomon Sea. These localized sites served water mass transformation. The objective of this paper appear crucial for diapycnal mixing, since most of the baro- is to document the M2 internal tides in the Solomon Sea and clinic tidal energy is generated and dissipated locally here, their impacts on the circulation and water masses, based on and the different currents entering/exiting the Solomon Sea two regional simulations with and without tides.
    [Show full text]
  • The Internal Gravity Wave Spectrum: a New Frontier in Global Ocean Modeling
    The internal gravity wave spectrum: A new frontier in global ocean modeling Brian K. Arbic Department of Earth and Environmental Sciences University of Michigan Supported by funding from: Office of Naval Research (ONR) National Aeronautics and Space Administration (NASA) National Science Foundation (NSF) Brian K. Arbic Internal wave spectrum in global ocean models Collaborators • Naval Research Laboratory Stennis Space Center: Joe Metzger, Jim Richman, Jay Shriver, Alan Wallcraft, Luis Zamudio • University of Southern Mississippi: Maarten Buijsman • University of Michigan: Joseph Ansong, Steve Bassette, Conrad Luecke, Anna Savage • McGill University: David Trossman • Bangor University: Patrick Timko • Norwegian Meteorological Institute: Malte M¨uller • University of Brest and The University of Texas at Austin: Rob Scott • NASA Goddard: Richard Ray • Florida State University: Eric Chassignet • Others including many members of the NSF-funded Climate Process Team led by Jennifer MacKinnon of Scripps Brian K. Arbic Internal wave spectrum in global ocean models Motivation • Breaking internal gravity waves drive most of the mixing in the subsurface ocean. • The internal gravity wave spectrum is just starting to be resolved in global ocean models. • Somewhat analogous to resolution of mesoscale eddies in basin- and global-scale models in 1990s and early 2000s. • Builds on global internal tide modeling, which began with 2004 Arbic et al. and Simmons et al. papers utilizing Hallberg Isopycnal Model (HIM) run with tidal foricng only and employing a horizontally uniform stratification. Brian K. Arbic Internal wave spectrum in global ocean models Motivation continued... • Here we utilize simulations of the HYbrid Coordinate Ocean Model (HYCOM) with both atmospheric and tidal forcing. • Near-inertial waves and tides are put into a model with a realistically varying background stratification.
    [Show full text]
  • Gravity Waves Are Just Waves As Pressure He Was Observing
    FLIGHTOPS Nearly impossible to predict and difficult to detect, this weather phenomenon presents Gravitya hidden risk, especially close to the ground. regory Bean, an experienced pi- National Weather Service observer re- around and land back at Burlington. lot and flight instructor, says he ferred to this as a “gravity wave.” Neither The wind had now swung around to wasn’t expecting any problems the controller nor Bean knew what the 270 degrees at 25 kt. At this point, he while preparing for his flight weather observer was talking about. recalled, his rate of descent became fromG Burlington, Vermont, to Platts- Deciding he could deal with the “alarming.” The VSI now pegged at the burgh, New York, U.S. His Piper Seneca wind, Bean was cleared for takeoff. The bottom of the scale. Despite the control checked out fine. The weather that April takeoff and initial climb were normal difficulty, he landed the aircraft without evening seemed benign. While waiting but he soon encountered turbulence “as further incident. Bean may not have for clearance, he was taken aback by a rough as I have ever encountered.” He known what a gravity wave was, but report of winds gusting to 35 kt from wanted to climb to 2,600 ft. With the he now knew what it could do to an 140 degrees. The air traffic control- vertical speed indicator (VSI) “pegged,” airplane.1 ler commented on rapid changes in he shot up to 3,600 ft. Finally control- Gravity waves are just waves as pressure he was observing. He said the ling the airplane, Bean opted to turn most people normally think of them.
    [Show full text]
  • Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston a Dissertation Submitted I
    Resonant Interactions of Surface and Internal Waves with Seabed Topography By Louis-Alexandre Couston A dissertation submitted in partial satisfaction of the requirements for the degree of Doctorate of Philosophy in Engineering - Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Mohammad-Reza Alam, Chair Professor Ronald W. Yeung Professor Philip S. Marcus Professor Per-Olof Persson Spring 2016 Abstract Resonant Interactions of Surface and Internal Waves with Seabed Topography by Louis-Alexandre Couston Doctor of Philosophy in Engineering - Mechanical Engineering University of California, Berkeley Professor Mohammad-Reza Alam, Chair This dissertation provides a fundamental understanding of water-wave transformations over seabed corrugations in the homogeneous as well as in the stratified ocean. Contrary to a flat or mildly sloped seabed, over which water waves can travel long distances undisturbed, a seabed with small periodic variations can strongly affect the propagation of water waves due to resonant wave-seabed interactions{a phenomenon with many potential applications. Here, we investigate theoretically and with direct simulations several new types of wave transformations within the context of inviscid fluid theory, which are different than the classical wave Bragg reflection. Specifically, we show that surface waves traveling over seabed corrugations can become trapped and amplified, or deflected at a large angle (∼ 90◦) relative to the incident direction of propagation. Wave trapping is obtained between two sets of parallel corrugations, and we demonstrate that the amplification mechanism is akin to the Fabry-Perot resonance of light waves in optics. Wave deflection requires three-dimensional and bi-chromatic corrugations and is obtained when the surface and corrugation wavenumber vectors satisfy a newly found class I2 Bragg resonance condition.
    [Show full text]
  • Gravity Wave and Tidal Influences On
    Ann. Geophys., 26, 3235–3252, 2008 www.ann-geophys.net/26/3235/2008/ Annales © European Geosciences Union 2008 Geophysicae Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx) D. C. Fritts1, S. L. Vadas1, D. M. Riggin1, M. A. Abdu2, I. S. Batista2, H. Takahashi2, A. Medeiros3, F. Kamalabadi4, H.-L. Liu5, B. G. Fejer6, and M. J. Taylor6 1NorthWest Research Associates, CoRA Division, Boulder, CO, USA 2Instituto Nacional de Pesquisas Espaciais (INPE), San Jose dos Campos, Brazil 3Universidade Federal de Campina Grande. Campina Grande. Paraiba. Brazil 4University of Illinois, Champaign, IL, USA 5National Center for Atmospheric research, Boulder, CO, USA 6Utah State University, Logan, UT, USA Received: 15 April 2008 – Revised: 7 August 2008 – Accepted: 7 August 2008 – Published: 21 October 2008 Abstract. The Spread F Experiment, or SpreadFEx, was per- Keywords. Ionosphere (Equatorial ionosphere; Ionosphere- formed from September to November 2005 to define the po- atmosphere interactions; Plasma convection) – Meteorology tential role of neutral atmosphere dynamics, primarily grav- and atmospheric dynamics (Middle atmosphere dynamics; ity waves propagating upward from the lower atmosphere, in Thermospheric dynamics; Waves and tides) seeding equatorial spread F (ESF) and plasma bubbles ex- tending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, 1 Introduction and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of The primary goal of the Spread F Experiment (SpreadFEx) neutral atmosphere and ionosphere dynamics and structure was to test the theory that gravity waves (GWs) play a key described in this special issue provide enticing evidence of role in the seeding of equatorial spread F (ESF), Rayleigh- gravity waves arising from deep convection in plasma bub- Taylor instability (RTI), and plasma bubbles extending to ble seeding at the bottomside F layer.
    [Show full text]
  • Inertia-Gravity Wave Generation: a WKB Approach
    Inertia-gravity wave generation: a WKB approach Jonathan Maclean Aspden Doctor of Philosophy University of Edinburgh 2010 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Jonathan Maclean Aspden) iii iv Abstract The dynamics of the atmosphere and ocean are dominated by slowly evolving, large-scale motions. However, fast, small-scale motions in the form of inertia-gravity waves are ubiquitous. These waves are of great importance for the circulation of the atmosphere and oceans, mainly because of the momentum and energy they transport and because of the mixing they create upon breaking. So far the study of inertia-gravity waves has answered a number of questions about their propagation and dissipation, but many aspects of their generation remain poorly understood. The interactions that take place between the slow motion, termed balanced or vortical motion, and the fast inertia-gravity wave modes provide mechanisms for inertia-gravity wave generation. One of these is the instability of balanced flows to gravity-wave-like perturbations; another is the so-called spontaneous generation in which a slowly evolving solution has a small gravity-wave component intrinsically coupled to it. In this thesis, we derive and study a simple model of inertia-gravity wave generation which considers the evolution of a small-scale, small amplitude perturbation superimposed on a large-scale, possibly time-dependent flow. The assumed spatial-scale separation makes it possible to apply a WKB approach which models the perturbation to the flow as a wavepacket.
    [Show full text]
  • Chapter 16: Waves [Version 1216.1.K]
    Contents 16 Waves 1 16.1Overview...................................... 1 16.2 GravityWavesontheSurfaceofaFluid . ..... 2 16.2.1 DeepWaterWaves ............................ 5 16.2.2 ShallowWaterWaves........................... 5 16.2.3 Capillary Waves and Surface Tension . .... 8 16.2.4 Helioseismology . 12 16.3 Nonlinear Shallow-Water Waves and Solitons . ......... 14 16.3.1 Korteweg-deVries(KdV)Equation . ... 14 16.3.2 Physical Effects in the KdV Equation . ... 16 16.3.3 Single-SolitonSolution . ... 18 16.3.4 Two-SolitonSolution . 19 16.3.5 Solitons in Contemporary Physics . .... 20 16.4 RossbyWavesinaRotatingFluid. .... 22 16.5SoundWaves ................................... 25 16.5.1 WaveEnergy ............................... 27 16.5.2 SoundGeneration............................. 28 16.5.3 T2 Radiation Reaction, Runaway Solutions, and Matched Asymp- toticExpansions ............................. 31 0 Chapter 16 Waves Version 1216.1.K, 7 Sep 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 16.1 Reader’s Guide This chapter relies heavily on Chaps. 13 and 14. • Chap. 17 (compressible flows) relies to some extent on Secs. 16.2, 16.3 and 16.5 of • this chapter. The remaining chapters of this book do not rely significantly on this chapter. • 16.1 Overview In the preceding chapters, we have derived the basic equations of fluid dynamics and devel- oped a variety of techniques to describe stationary flows. We have also demonstrated how, even if there exists a rigorous, stationary solution of these equations for a time-steady flow, instabilities may develop and the amplitude of oscillatory disturbances will grow with time. These unstable modes of an unstable flow can usually be thought of as waves that interact strongly with the flow and extract energy from it.
    [Show full text]
  • The Impact of Fortnightly Stratification Variability on the Generation Of
    Journal of Marine Science and Engineering Article The Impact of Fortnightly Stratification Variability on the Generation of Baroclinic Tides in the Luzon Strait Zheen Zhang 1,*, Xueen Chen 1 and Thomas Pohlmann 2 1 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] 2 Centre for Earth System Research and Sustainability, Institute of Oceanography, University of Hamburg, 20146 Hamburg, Germany; [email protected] * Correspondence: [email protected] Abstract: The impact of fortnightly stratification variability induced by tide–topography interaction on the generation of baroclinic tides in the Luzon Strait is numerically investigated using the MIT general circulation model. The simulation shows that advection of buoyancy by baroclinic flows results in daily oscillations and a fortnightly variability in the stratification at the main generation site of internal tides. As the stratification for the whole Luzon Strait is periodically redistributed by these flows, the energy analysis indicates that the fortnightly stratification variability can significantly affect the energy transfer between barotropic and baroclinic tides. Due to this effect on stratification variability by the baroclinic flows, the phases of baroclinic potential energy variability do not match the phase of barotropic forcing in the fortnight time scale. This phenomenon leads to the fact that the maximum baroclinic tides may not be generated during the maximum barotropic forcing. Therefore, a significant impact of stratification variability on the generation of baroclinic tides is demonstrated Citation: Zhang, Z.; Chen, X.; by our modeling study, which suggests a lead–lag relation between barotropic tidal forcing and Pohlmann, T. The Impact of maximum baroclinic response in the Luzon Strait within the fortnightly tidal cycle.
    [Show full text]