Special Relativity: Faster Than Light/Back in Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
H. G. Wells Time Traveler
Items on Exhibit 1. H. G. Wells – Teacher to the World 11. H. G. Wells. Die Zeitmaschine. (Illustrierte 21. H. G. Wells. Picshua [sketch] ‘Omaggio to 1. H. G. Wells (1866-1946). Text-book of Klassiker, no. 46) [Aachen: Bildschriftenverlag, P.C.B.’ [1900] Biology. London: W.B. Clive & Co.; University 196-]. Wells Picshua Box 1 H. G. Wells Correspondence College Press, [1893]. Wells Q. 823 W46ti:G Wells 570 W46t, vol. 1, cop. 1 Time Traveler 12. H. G. Wells. La machine à explorer le temps. 7. Fantasias of Possibility 2. H. G. Wells. The Outline of History, Being a Translated by Henry-D. Davray, illustrated by 22. H. G. Wells. The World Set Free [holograph Plain History of Life and Mankind. London: G. Max Camis. Paris: R. Kieffer, [1927]. manuscript, ca. 1913]. Simon J. James is Head of the Newnes, [1919-20]. Wells 823 W46tiFd Wells WE-001, folio W-3 Wells Q. 909 W46o 1919 vol. 2, part. 24, cop. 2 Department of English Studies, 13. H. G. Wells. Stroz času : Neviditelný. 23. H. G. Wells to Frederick Wells, ‘Oct. 27th 45’ Durham University, UK. He has 3. H. G. Wells. ‘The Idea of a World Translated by Pavla Moudrá. Prague: J. Otty, [Holograph letter]. edited Wells texts for Penguin and Encyclopedia.’ Nature, 138, no. 3500 (28 1905. Post-1650 MS 0667, folder 75 November 1936) : 917-24. Wells 823 W46tiCzm. World’s Classics and The Wellsian, the Q. 505N 24. H. G. Wells’ Things to Come. Produced by scholarly journal of the H. G. Wells Alexander Korda, directed by William Cameron Society. -
The Future of Robotics an Inside View on Innovation in Robotics
The Future of Robotics An Inside View on Innovation in Robotics FEATURE Robots, Humans and Work Executive Summary Robotics in the Startup Ecosystem The automation of production through three industrial revolutions has increased global output exponentially. Now, with machines increasingly aware and interconnected, Industry 4.0 is upon us. Leading the charge are fleets of autonomous robots. Built by major multinationals and increasingly by innovative VC-backed companies, these robots have already become established participants in many areas of the economy, from assembly lines to farms to restaurants. Investors, founders and policymakers are all still working to conceptualize a framework for these companies and their transformative Austin Badger technology. In this report, we take a data-driven approach to emerging topics in the industry, including business models, performance metrics, Director, Frontier Tech Practice and capitalization trends. Finally, we review leading theories of how automation affects the labor market, and provide quantitative evidence for and against them. It is our view that the social implications of this industry will be massive and will require a continual examination by those driving this technology forward. The Future of Robotics 2 Table of Contents 4 14 21 The Landscape VC and Robots Robots, Humans and Work Industry 4.0 and the An Emerging Framework Robotics Ecosystem The Interplay of Automation and Labor The Future of Robotics 3 The Landscape Industry 4.0 and the Robotics Ecosystem The Future of Robotics 4 COVID-19 and US Manufacturing, Production and Nonsupervisory Workers the Next 12.8M Automation Wave 10.2M Recessions tend to reduce 9.0M employment, and some jobs don’t come back. -
A NEW SOCIAL COMPACT for Work and Workers
FUTURE OF WORK IN CALIFORNIA A NEW SOCIAL COMPACT for work and workers RE OF W TU OR FU K CO N M MISSIO E OF W TUR OR FU K CO N M MISSIO Commissioners Produced by Institute for the Future (IFTF) for the California Future of Members of the Future of Work Commission were appointed by Governor Work Commission, with the support Gavin Newsom to help create inclusive, long-term economic growth and ensure from The James Irvine Foundation, Californians share in that success. Blue Shield of California Foundation, the Ford Foundation and Lumina Mary Kay Henry, Co-Chair Ash Kalra Foundation. President, Service Employees State Assemblymember, California International Union District 27 James Manyika, Co-Chair Stephane Kasriel Chairman & Director, McKinsey Former CEO, Upwork Global Institute Commission Staff Fei-Fei Li Roy Bahat Professor & Co-Director, Human- Anmol Chaddha, Head, Bloomberg Beta Centered Artificial Intelligence Manager Institute, Stanford Doug Bloch Alyssa Andersen Political Director, Teamsters Joint John Marshall Julie Ericsson Council 7 Senior Capital Markets Economist, United Food and Commercial Ben Gansky Soraya Coley Workers President, California Polytechnic Georgia Gillan State University, Pomona Art Pulaski Executive Secretary-Treasurer Marina Gorbis Lloyd Dean & Chief Officer, California Labor CEO, CommonSpirit Health Jean Hagan Federation Jennifer Granholm* Lyn Jeffery Maria S. Salinas Former Governor, State of Michigan President & CEO, Los Angeles Area *Resigned from Commission Ilana Lipsett Chamber of Commerce upon nomination -
Near-Death Experiences and the Theory of the Extraneuronal Hyperspace
Near-Death Experiences and the Theory of the Extraneuronal Hyperspace Linz Audain, J.D., Ph.D., M.D. George Washington University The Mandate Corporation, Washington, DC ABSTRACT: It is possible and desirable to supplement the traditional neu rological and metaphysical explanatory models of the near-death experience (NDE) with yet a third type of explanatory model that links the neurological and the metaphysical. I set forth the rudiments of this model, the Theory of the Extraneuronal Hyperspace, with six propositions. I then use this theory to explain three of the pressing issues within NDE scholarship: the veridicality, precognition and "fear-death experience" phenomena. Many scholars who write about near-death experiences (NDEs) are of the opinion that explanatory models of the NDE can be classified into one of two types (Blackmore, 1993; Moody, 1975). One type of explana tory model is the metaphysical or supernatural one. In that model, the events that occur within the NDE, such as the presence of a tunnel, are real events that occur beyond the confines of time and space. In a sec ond type of explanatory model, the traditional model, the events that occur within the NDE are not at all real. Those events are merely the product of neurobiochemical activity that can be explained within the confines of current neurological and psychological theory, for example, as hallucination. In this article, I supplement this dichotomous view of explanatory models of the NDE by proposing yet a third type of explanatory model: the Theory of the Extraneuronal Hyperspace. This theory represents a Linz Audain, J.D., Ph.D., M.D., is a Resident in Internal Medicine at George Washington University, and Chief Executive Officer of The Mandate Corporation. -
Back Or to the Future? Preferences of Time Travelers
Judgment and Decision Making, Vol. 7, No. 4, July 2012, pp. 373–382 Back or to the future? Preferences of time travelers Florence Ettlin∗ Ralph Hertwig† Abstract Popular culture reflects whatever piques our imagination. Think of the myriad movies and books that take viewers and readers on an imaginary journey to the past or the future (e.g., Gladiator, The Time Machine). Despite the ubiquity of time travel as a theme in cultural expression, the factors that underlie people’s preferences concerning the direction of time travel have gone unexplored. What determines whether a person would prefer to visit the (certain) past or explore the (uncertain) future? We identified three factors that markedly affect people’s preference for (hypothetical) travel to the past or the future, respectively. Those who think of themselves as courageous, those with a more conservative worldview, and—perhaps counterintuitively—those who are advanced in age prefer to travel into the future. We discuss implications of these initial results. Keywords: time travel; preferences; age; individual differences; conservative Weltanschauung. 1 Introduction of the future. But what determines whether the cultural time machine’s lever is pushed forward to an unknown 1.1 Hypothetical time traveling: A ubiqui- future or back to a more certain past? tous yet little understood activity Little is known about the factors that determine peo- ple’s preferences with regard to the “direction” of time “I drew a breath, set my teeth, gripped the starting lever travel. Past investigations of mental time travel have typ- with both hands, and went off with a thud” (p. -
APPARENT SIMULTANEITY Hanoch Ben-Yami
APPARENT SIMULTANEITY Hanoch Ben-Yami ABSTRACT I develop Special Relativity with backward-light-cone simultaneity, which I call, for reasons made clear in the paper, ‘Apparent Simultaneity’. In the first section I show some advantages of this approach. I then develop the kinematics in the second section. In the third section I apply the approach to the Twins Paradox: I show how it removes the paradox, and I explain why the paradox was a result of an artificial symmetry introduced to the description of the process by Einstein’s simultaneity definition. In the fourth section I discuss some aspects of dynamics. I conclude, in a fifth section, with a discussion of the nature of light, according to which transmission of light energy is a form of action at a distance. 1 Considerations Supporting Backward-Light-Cone Simultaneity ..........................1 1.1 Temporal order...............................................................................................2 1.2 The meaning of coordinates...........................................................................3 1.3 Dependence of simultaneity on location and relative motion........................4 1.4 Appearance as Reality....................................................................................5 1.5 The Time Lag Argument ...............................................................................6 1.6 The speed of light as the greatest possible speed...........................................8 1.7 More on the Apparent Simultaneity approach ...............................................9 -
Science Fiction Stories with Good Astronomy & Physics
Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball. -
Einstein's Boxes
Einstein’s Boxes Travis Norsen∗ Marlboro College, Marlboro, Vermont 05344 (Dated: February 1, 2008) At the 1927 Solvay conference, Albert Einstein presented a thought experiment intended to demon- strate the incompleteness of the quantum mechanical description of reality. In the following years, the experiment was modified by Einstein, de Broglie, and several other commentators into a simple scenario involving the splitting in half of the wave function of a single particle in a box. This paper collects together several formulations of this thought experiment from the literature, analyzes and assesses it from the point of view of the Einstein-Bohr debates, the EPR dilemma, and Bell’s the- orem, and argues for “Einstein’s Boxes” taking its rightful place alongside similar but historically better known quantum mechanical thought experiments such as EPR and Schr¨odinger’s Cat. I. INTRODUCTION to Copenhagen such as Bohm’s non-local hidden variable theory. Because of its remarkable simplicity, the Einstein Boxes thought experiment also is well-suited as an intro- It is well known that several of quantum theory’s duction to these topics for students and other interested founders were dissatisfied with the theory as interpreted non-experts. by Niels Bohr and other members of the Copenhagen school. Before about 1928, for example, Louis de Broglie The paper is organized as follows. In Sec. II we intro- duce Einstein’s Boxes by quoting a detailed description advocated what is now called a hidden variable theory: a pilot-wave version of quantum mechanics in which parti- due to de Broglie. We compare it to the EPR argument and discuss how it fares in eluding Bohr’s rebuttal of cles follow continuous trajectories, guided by a quantum wave.1 David Bohm’s2 rediscovery and completion of the EPR. -
A Rhetorical Analysis of Dystopian Film and the Occupy Movement Justin J
James Madison University JMU Scholarly Commons Masters Theses The Graduate School Spring 2015 Occupy the future: A rhetorical analysis of dystopian film and the Occupy movement Justin J. Grandinetti James Madison University Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the American Film Studies Commons, American Popular Culture Commons, Digital Humanities Commons, Other Film and Media Studies Commons, Other Languages, Societies, and Cultures Commons, Rhetoric Commons, and the Visual Studies Commons Recommended Citation Grandinetti, Justin J., "Occupy the future: A rhetorical analysis of dystopian film and the Occupy movement" (2015). Masters Theses. 43. https://commons.lib.jmu.edu/master201019/43 This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact [email protected]. Occupy the Future: A Rhetorical Analysis of Dystopian Film and the Occupy Movement Justin Grandinetti A thesis submitted to the Graduate Faculty of JAMES MADISON UNIVERSITY In Partial Fulfillment of the Requirements for the degree of Master of Arts Writing, Rhetoric, and Technical Communication May 2015 Dedication Page This thesis is dedicated to the world’s revolutionaries and all the individuals working to make the planet a better place for future generations. ii Acknowledgements I’d like to thank a number of people for their assistance and support with this thesis project. First, a heartfelt thank you to my thesis chair, Dr. Jim Zimmerman, for always being there to make suggestions about my drafts, talk about ideas, and keep me on schedule. -
Lecture 40: Science Fact Or Science Fiction? Time Travel
Lecture 40: Science Fact or Science Fiction? Time Travel Key Ideas Travel into the future: Permitted by General Relativity Relativistic starships or strong gravitation Travel back to the past Might be possible with stable wormholes The Grandfather Paradox Hawking’s Chronology Protection Conjecture Into the future…. We are traveling into the future right now without trying very hard. Can we get there faster? What if you want to celebrate New Years in 3000? Simple: slow your clock down relative to the clocks around you. This is permitted by Special and General Relativity Accelerated Clocks According to General Relativity Accelerated clocks run at a slower rate than a clock moving with uniform velocity Choice of accelerated reference frames: Starship accelerated to relativistic (near-light) speeds Close proximity to a very strongly gravitating body (e.g. black holes) A Journey to the Galactic Center Jane is 20, Dick is 22. Jane is in charge of Mission Control. Dick flies to the Galactic Center, 8 kpc away: Accelerates at 1g half-way then Decelerates at 1g rest of the way Studies the Galactic Center for 1 year, then Returns to Earth by the same route Planet of the Warthogs As measured by Dick’s accelerated clock: Round trip (including 1 year of study) takes ~42 years He return at age 22+42=64 years old Meanwhile back on Earth: Dick’s trip takes ~52,000 yrs Jane died long, long ago After a nuclear war, humans have been replaced by sentient warthogs as the dominant species Advantages to taking Astro 162 Dick was smart and took Astro 162 Dick knew about accelerating clocks running slow, and so he could conclude “Ah, there’s been a nuclear war and humans have been replaced by warthogs”. -
Class 4: Space-Time Diagrams
Class 4: Space-time Diagrams In this class we will explore how space-time diagrams may be used to visualize events and causality in relativity Class 4: Space-time Diagrams At the end of this session you should be able to … • … create a space-time diagram showing events and world lines in a given reference frame • … determine geometrically which events are causally connected, via the concept of the light cone • … understand that events separated by a constant space-time interval from the origin map out a hyperbola in space-time • … use space-time diagrams to relate observations in different inertial frames, via tilted co-ordinate systems What is a space-time diagram? • A space-time diagram is a graph showing the position of objects (events) in a reference frame, as a function of time • Conventionally, space (�) is represented in the horizontal direction, and time (�) runs upwards �� Here is an event This is the path of a light ray travelling in the �- direction (i.e., � = ��), We have scaled time by a which makes an angle of factor of �, so it has the 45° with the axis same dimensions as space What would be the � path of an object moving at speed � < �? What is a space-time diagram? • The path of an object (or light ray) moving through a space- time diagram is called a world line of that object, and may be thought of as a chain of many events • Note that a world line in a space-time diagram may not be the same shape as the path of an object through space �� Rocket ship accelerating in �-direction (path in Rocket ship accelerating in �- -
EPR, Time, Irreversibility and Causality
EPR, time, irreversibility and causality Umberto Lucia 1;a & Giulia Grisolia 1;b 1 Dipartimento Energia \Galileo Ferraris", Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy a [email protected] b [email protected] Abstract Causality is the relationship between causes and effects. Following Relativity, any cause of an event must always be in the past light cone of the event itself, but causes and effects must always be related to some interactions. In this paper, causality is developed as a conse- quence of the analysis of the Einstein, Podolsky and Rosen paradox. Causality is interpreted as the result of the time generation, due to irreversible interactions of real systems among them. Time results as a consequence of irreversibility, so any state function of a system in its space cone, when affected by an interaction with an observer, moves into a light cone or within it, with the consequence that any cause must precede its effect in a common light cone. Keyword: EPR paradox; Irreversibility; Quantum Physics; Quan- tum thermodynamics; Time. 1 Introduction The problem of the link between entropy and time has a long story and many viewpoints. In relation to irreversibility, Franklin [1] analysed some processes, in their steady states, evaluating their entropy variation, and he highlighted that they are related only to energy transformations. Thermodynamics is the physical science which develops the study of the energy transformations , allowing the scientists and engineers to ob- tain fundamental results [2{4] in physics, chemistry, biophysics, engineering and information theory. During the development of this science, entropy 1 has generally been recognized as one of the most important thermodynamic quantities due to its interdisciplinary applications [5{8].