Getting Started with RTEMS for C C++ Users

Total Page:16

File Type:pdf, Size:1020Kb

Getting Started with RTEMS for C C++ Users Getting Started with RTEMS for C/C++ Users Edition 4.0.0, for RTEMS 4.0.0 Octob er 1998 On-Line Applications Research Corp oration On-Line Applications Research Corp oration T Xinfo 1.1.1.1 E c COPYRIGHT 1988 - 1998. On-Line Applications Research Corp oration OAR. The authors have used their b est e orts in preparing this material. These e orts include the development, research, and testing of the theories and programs to determine their e ectiveness. No warrantyofany kind, expressed or implied, with regard to the software or the material contained in this do cument is provided. No liability arising out of the application or use of any pro duct describ ed in this do cument is assumed. The authors reserve the right to revise this material and to makechanges from time to time in the content hereof without obligation to notify anyone of such revision or changes. Any inquiries concerning RTEMS, its related supp ort comp onents, or its do cumentation should b e directed to either: On-Line Applications Research Corporation 4910-L Corporate Drive Huntsville, AL 35805 VOICE: 256 722-9985 FAX: 256 722-0985 EMAIL: [email protected] Chapter 1: Intro duction 1 1 Intro duction The purp ose of this do cument is to guide you through the pro cess of installing a GNU cross developmentenvironment to use with RTEMS. If you are already familiar with the concepts b ehind a cross compiler and have a background in Unix, these instructions should provide the bare essentials for p erforming a setup of the following items: GNU C/C++ Cross Compilation To ols for RTEMS on your host system RTEMS OS for the target host GDB Debugger The remainder of this chapter provides background information on real-time emb edded systems and cross development and an overview of other resources of interest on the Internet. If you are not familiar with real-time emb edded systems or the other areas, please read those sections. These sections will help familiarize you with the typ es of systems RTEMS is designed to b e used in and the cross development pro cess used when developing RTEMS applications. 1.1 Real-Time Emb edded Systems Real-time emb edded systems are found in practically every facet of our everyday lives. Today's systems range from the common telephone, automobile control systems, and kitchen appliances to complex air trac control systems, military weap on systems, an d pro duction line control including rob otics and automation. However, in the current climate of rapidly changing technology, it is dicult to reach a consensus on the de nition of a real-time emb edded system. Hardware costs are continuing to rapidly decline while at the same time the hardware is increasing in p ower and functionality. As a result, emb edded systems that were not considered viable two years ago are suddenly a cost e ective solution. In this domain, it is not uncommon for a single hardware con guration to employ a variety of architectures and technologies. Therefore, we shall de ne an emb edded system as any computer system that is built into a larger system consisting of multiple technologies such as digital and analog electronics, mechanical devices, and sensors. Even as hardware platforms b ecome more p owerful, most emb edded systems are critically dep endent on the real-time software emb edded in the systems themselves. Regardless of how eciently the hardware op erates, the p erformance of the emb edded real-time software determines the success of the system. As the complexity of the emb edded hardware platform grows, so do es the size and complexity of the emb edded software. Software systems must routinely p erform activities which were only dreamed of a short time ago. These large, complex, real-time emb edded applications now commonly contain one million lines of co de or more. Real-time emb edded systems have a complex set of characteristics that distinguish them from other software applications. Real-time emb edded systems are driven by and must resp ond to real 2 Getting Started with RTEMS for C/C++ Users world events while adhering to rigorous requirements imp osed by the environment with which they interact. The correctness of the system dep ends not only on the results of computations, but also on the time at which the results are pro duced. The most imp ortant and complex characteristic of real-time application systems is that they must receive and resp ond to a set of external stimuli within rigid and critical time constraints. A single real-time application can be comp osed of b oth soft and hard real-time comp onents. A typical example of a hard real-time system is a nuclear reactor control system that must not only detect failures, but must also resp ond quickly enough to prevent a meltdown. This application also has soft real-time requirements b ecause it mayinvolve a man-machine interface. Providing an interactive input to the control system is not as critical as setting o an alarm to indicate a failure condition. However, th e interactive system comp onent must resp ond within an acceptable time limit to allow the op erator to interact eciently with the control system. 1.2 Cross Development Today almost all real-time emb edded software systems are develop ed in a cross development envi- ronment using cross development to ols. In the cross development environment, software develop- ment activities are typically p erformed on one computer system, the host system, while the result of the development e ort pro duced by the cross to ols is a software system that executes on the target platform. The requirements for the target platform are usually incompatible and quite often in direct con ict with the requirements for the host. Moreover, the target hardware is often custom designed for a particular pro ject. This means that the cross development to olset must allow the develop er to customize the to ols to address target sp eci c run-time issues. The to olset must have provisions for b oard dep endent initialization co de, device drivers, and error handling co de. The host computer is optimized to supp ort the co de development cycle with supp ort for co de editors, compilers, and linkers requiring large disk drives, user development windows, and multiple develop er connections. Thus the host computer is typically a traditional UNIX workstation such as are available from SUN or Silicon Graphics, or a PC running either a version of MS-Windows or UNIX. The host system may also be required to execute oce pro ductivity applications to allow the software develop er to write do cumentation, make presentations, or track the pro ject's progress using a pro ject management to ol. This necessitates that the host computer be general purp ose with resources such as a thirty-two or sixty-four bit pro cessor, large amounts of RAM, a monitor, mouse, keyb oard, hard and oppy disk drives, CD-ROM drive, and a graphics card. It is likely that the system will b e multimedia capable and have some networking capability. Conversely, the target platform generally has limited traditional computer resources. The hardware is designed for the particular functionality and requirements of the emb edded system and optimized to p erform those tasks e ectively. Instead of hard driverss and keyb oards, it is comp osed of sensors, relays, and stepp er motors. The p er-unit cost of the target platform is typically a critical concern. No hardware comp onent is included without b eing cost justi ed. As a result, the pro cessor of the target system is often from a di erent pro cessor family than that of the Chapter 1: Intro duction 3 host system and usually has lower p erformance. In addition to the pro cessor families targeted only for use in emb edded systems, there are versions of nearly every general-purp ose pro cess or sp eci cally tailored for real-time emb edded systems. For example, many of the pro cessors targeting the emb edded market do not include hardware oating p oint units, but do include p eripherals such as timers, serial controllers, or network interfaces. 1.3 Resources on the Internet This section describ es various resources on the Internet which are of use to RTEMS users. 1.3.1 RTEMS Mailing List [email protected] This mailing list is dedicated to discussion of issues related to RTEMS. If you have questions ab out RTEMS, wish to make suggestions, or just want to pick up hints, this is a go o d list to subscrib e to. Subscrib e by sending a message with the one line "subscrib e" to [email protected]. 1.3.2 CrossGCC Mailing List [email protected] This mailing list is dedicated to the use of the GNU to ols in cross development environments. Most of the discussions fo cus on emb edded issues. Subscrib e by sending a message with the one line "subscrib e" to [email protected]. The crossgcc FAQ as well as a number of patches and utiliities of interest to cross development system users are available at ftp://ftp.cygnus.com/pub/emb edded/crossgcc. 1.3.3 EGCS Mailing List [email protected] This mailing list is dedicated to the EGCS Pro ject whichwas formed to sp eed the development and integration of the various GNU languages. The RTEMS and Linux communities were among those initially targetted by the EGCS Pro ject as b eing imp ortant for its success.
Recommended publications
  • Overrun Handling for Mixed-Criticality Support in RTEMS Kuan-Hsun Chen, Georg Von Der Brüggen, Jian-Jia Chen
    Overrun Handling for Mixed-Criticality Support in RTEMS Kuan-Hsun Chen, Georg von der Brüggen, Jian-Jia Chen To cite this version: Kuan-Hsun Chen, Georg von der Brüggen, Jian-Jia Chen. Overrun Handling for Mixed-Criticality Support in RTEMS. WMC 2016, Nov 2016, Porto, Portugal. hal-01438843 HAL Id: hal-01438843 https://hal.archives-ouvertes.fr/hal-01438843 Submitted on 25 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Overrun Handling for Mixed-Criticality Support in RTEMS Kuan-Hsun Chen, Georg von der Bruggen,¨ and Jian-Jia Chen Department of Informatics, TU Dortmund University, Germany Email: fkuan-hsun.chen, georg.von-der-brueggen, [email protected] Abstract—Real-time operating systems are not only used in of real-time operation systems is sufficient. However, some embedded real-time systems but also useful for the simulation and applications also have tasks with arbitrary deadlines, i.e., for validation of those systems. During the evaluation of our paper some tasks D > T . If the tasks are strictly periodic, this about Systems with Dynamic Real-Time Guarantees that appears i i in RTSS 2016 we discovered certain unexpected system behavior leads to a situation where two or more instances of the same in the open-source real-time operating system RTEMS.
    [Show full text]
  • The Many Approaches to Real-Time and Safety Critical Linux Systems
    Corporate Technology The Many Approaches to Real-Time and Safety-Critical Linux Open Source Summit Japan 2017 Prof. Dr. Wolfgang Mauerer Siemens AG, Corporate Research and Technologies Smart Embedded Systems Corporate Competence Centre Embedded Linux Copyright c 2017, Siemens AG. All rights reserved. Page 1 31. Mai 2017 W. Mauerer Siemens Corporate Technology Corporate Technology The Many Approaches to Real-Time and Safety-Critical Linux Open Source Summit Japan 2017 Prof. Dr. Wolfgang Mauerer, Ralf Ramsauer, Andreas Kolbl¨ Siemens AG, Corporate Research and Technologies Smart Embedded Systems Corporate Competence Centre Embedded Linux Copyright c 2017, Siemens AG. All rights reserved. Page 1 31. Mai 2017 W. Mauerer Siemens Corporate Technology Overview 1 Real-Time and Safety 2 Approaches to Real-Time Architectural Possibilities Practical Approaches 3 Approaches to Linux-Safety 4 Guidelines and Outlook Page 2 31. Mai 2017 W. Mauerer Siemens Corporate Technology Introduction & Overview About Siemens Corporate Technology: Corporate Competence Centre Embedded Linux Technical University of Applied Science Regensburg Theoretical Computer Science Head of Digitalisation Laboratory Target Audience Assumptions System Builders & Architects, Software Architects Linux Experience available Not necessarily RT-Linux and Safety-Critical Linux experts Page 3 31. Mai 2017 W. Mauerer Siemens Corporate Technology A journey through the worlds of real-time and safety Page 4 31. Mai 2017 W. Mauerer Siemens Corporate Technology Outline 1 Real-Time and Safety 2 Approaches to Real-Time Architectural Possibilities Practical Approaches 3 Approaches to Linux-Safety 4 Guidelines and Outlook Page 5 31. Mai 2017 W. Mauerer Siemens Corporate Technology Real-Time: What and Why? I Real Time Real Fast Deterministic responses to stimuli Caches, TLB, Lookahead Bounded latencies (not too late, not too Pipelines early) Optimise average case Repeatable results Optimise/quantify worst case Page 6 31.
    [Show full text]
  • OPERATING SYSTEMS.Ai
    Introduction Aeroflex Gaisler provides LEON and ERC32 users with a wide range of popular embedded operating systems. Ranging from very small footprint task handlers to full featured Real-Time Operating System (RTOS). A summary of available operating systems and their characteristics is outlined below. VxWorks The VxWorks SPARC port supports LEON3/4 and LEON2. Drivers for standard on-chip peripherals are included. The port supports both non-MMU and MMU systems allowing users to program fast and secure applications. Along with the graphical Eclipse based workbench comes the extensive VxWorks documentation. • MMU and non-MMU system support • SMP support (in 6.7 and later) • Networking support (Ethernet 10/100/1000) • UART, Timer, and interrupt controller support • PCI, SpaceWire, CAN, MIL-STD-1553B, I2C and USB host controller support • Eclipse based Workbench • Commercial license ThreadX The ThreadX SPARC port supports LEON3/4 and its standard on-chip peripherals. ThreadX is an easy to learn and understand advanced pico-kernel real-time operating system designed specifically for deeply embedded applications. ThreadX has a rich set of system services for memory allocation and threading. • Non-MMU system support • Bundled with newlib C library • Support for NetX, and USBX ® • Very small footprint • Commercial license Nucleus Nucleus is a real time operating system which offers a rich set of features in a scalable and configurable manner. • UART, Timer, Interrupt controller, Ethernet (10/100/1000) • TCP offloading and zero copy TCP/IP stack (using GRETH GBIT MAC) • USB 2.0 host controller and function controller driver • Small footprint • Commercial license LynxOS LynxOS is an advanced RTOS suitable for high reliability environments.
    [Show full text]
  • Final Report
    Parallel Programming Models for Space Systems BSC - Evidence ESA Contract No. 4000114391/15/NL/Cbi/GM Final Report Parallel Programming Models for Space Systems (ESA Contract No. 4000114391/15/NL/Cbi/GM) Main contractor Subcontractor Barcelona Supercomputing Center (BSC) Evidence Srl. Eduardo Quiñones, Paolo Gai, [email protected] [email protected] Dissemination level: All information contained in this document is puBlic June 2016 1 Parallel Programming Models for Space Systems BSC - Evidence ESA Contract No. 4000114391/15/NL/Cbi/GM Table of Contents 1 Introduction ..................................................................................................... 3 2 Future work: Next development activities to reach higher TRL (5/6) ................ 4 Annex I - D1.1. Report on parallelisation experiences for the space application .... 5 Annex II - D2.1. Report on the evaluation of current implementations of OpenMP ............................................................................................................................ 23 Annex III - D3.1. Report on the applicability of OpenMP4 on multi-core space platforms ............................................................................................................ 36 2 Parallel Programming Models for Space Systems BSC - Evidence ESA Contract No. 4000114391/15/NL/Cbi/GM 1 Introduction High-performance parallel architectures are becoming a reality in the critical real-time embedded systems in general, and in the space domain in particular. This is the case of the
    [Show full text]
  • KINTSUGI Identifying & Addressing Challenges in Embedded Binary
    KINTSUGI Identifying & addressing challenges in embedded binary security jos wetzels Supervisors: Prof. dr. Sandro Etalle Ali Abbasi, MSc. Department of Mathematics and Computer Science Eindhoven University of Technology (TU/e) June 2017 Jos Wetzels: Kintsugi, Identifying & addressing challenges in embed- ded binary security, © June 2017 To my family Kintsugi ("golden joinery"), is the Japanese art of repairing broken pottery with lacquer dusted or mixed with powdered gold, silver, or platinum. As a philosophy, it treats breakage and repair as part of the history of an object, rather than something to disguise. —[254] ABSTRACT Embedded systems are found everywhere from consumer electron- ics to critical infrastructure. And with the growth of the Internet of Things (IoT), these systems are increasingly interconnected. As a re- sult, embedded security is an area of growing concern. Yet a stream of offensive security research, as well as real-world incidents, contin- ues to demonstrate how vulnerable embedded systems actually are. This thesis focuses on binary security, the exploitation and miti- gation of memory corruption vulnerabilities. We look at the state of embedded binary security by means of quantitative and qualitative analysis and identify several gap areas and show embedded binary security to lag behind the general purpose world significantly. We then describe the challenges and limitations faced by embedded exploit mitigations and identify a clear open problem area that war- rants attention: deeply embedded systems. Next, we outline the cri- teria for a deeply embedded exploit mitigation baseline. Finally, as a first step to addressing this problem area, we designed, implemented and evaluated µArmor : an exploit mitigation baseline for deeply em- bedded systems.
    [Show full text]
  • Flight Software Workshop 2007 ( FSW-07)
    Flight Software Workshop 2007 ( FSW-07) Current and Future Flight Operating Systems Alan Cudmore Flight Software Branch NASAIGSFC November 2007 Page I Outline Types of Real Time Operating Systems - Classic Real Time Operating Systems - Hybrid Real Time Operating Systems - Process Model Real Time Operating Systems - Partitioned Real Time Operating Systems Is the Classic RTOS Showing it's Age? Process Model RTOS for Flight Systems Challenges of Migrating to a Process Model RTOS Which RTOS Solution is Best? Conclusion November 2007 Page 2 GSFC Satellites with COTS Real (waiting for launch) (launched 8/92) (launched 12/98) (launched 3/98) (launched 2/99) (12/04) XTE (launched 12/95) TRMM (launched 11/97) JWST lSlM (201 1) Icesat GLAS f01/03) MAP (launched 06/01) LRO HST 386 4llH -%Y ST-5 (5/06) November 2007 Page 3 Classic Real Time OS What is a "Classic" RTOS? - Developed for easy COTS development on common 16 and 32 bit CPUs. - Designed for systems with single address space, and low resources - Literally Dozens of choices with a wide array of features. November 2007 Page 4 Classic RTOS - VRTX Ready Systems VRTX Size: Small - 8KB RTOS Kernel Provides: Very basic RTOS services Used on: - Small Explorer Missions Used from 1992 to 1999 8086 and 80386 Processors - Medium Explorer Missions XTE (1995) TRMM (1997) 80386 Processors - Hubble Space Telescope 80386 Processors Advantages: - Small, fast - Uses 80386 memory protection -- A feature we have missed since we stopped using it! Current use: - Only being maintained, not used for new development
    [Show full text]
  • Embedded Operating Systems
    7 Embedded Operating Systems Claudio Scordino1, Errico Guidieri1, Bruno Morelli1, Andrea Marongiu2,3, Giuseppe Tagliavini3 and Paolo Gai1 1Evidence SRL, Italy 2Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland 3University of Bologna, Italy In this chapter, we will provide a description of existing open-source operating systems (OSs) which have been analyzed with the objective of providing a porting for the reference architecture described in Chapter 2. Among the various possibilities, the ERIKA Enterprise RTOS (Real-Time Operating System) and Linux with preemption patches have been selected. A description of the porting effort on the reference architecture has also been provided. 7.1 Introduction In the past, OSs for high-performance computing (HPC) were based on custom-tailored solutions to fully exploit all performance opportunities of supercomputers. Nowadays, instead, HPC systems are being moved away from in-house OSs to more generic OS solutions like Linux. Such a trend can be observed in the TOP500 list [1] that includes the 500 most powerful supercomputers in the world, in which Linux dominates the competition. In fact, in around 20 years, Linux has been capable of conquering all the TOP500 list from scratch (for the first time in November 2017). Each manufacturer, however, still implements specific changes to the Linux OS to better exploit specific computer hardware features. This is especially true in the case of computing nodes in which lightweight kernels are used to speed up the computation. 173 174 Embedded Operating Systems Figure 7.1 Number of Linux-based supercomputers in the TOP500 list. Linux is a full-featured OS, originally designed to be used in server or desktop environments.
    [Show full text]
  • Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers
    S S symmetry Article Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers Ioan Ungurean 1,2 1 Faculty of Electrical Engineering and Computer Science; Stefan cel Mare University of Suceava, 720229 Suceava, Romania; [email protected] 2 MANSiD Integrated Center, Stefan cel Mare University, 720229 Suceava, Romania Received: 9 March 2020; Accepted: 1 April 2020; Published: 8 April 2020 Abstract: In automatic systems used in the control and monitoring of industrial processes, fieldbuses with specific real-time requirements are used. Often, the sensors are connected to these fieldbuses through embedded systems, which also have real-time features specific to the industrial environment in which it operates. The embedded operating systems are very important in the design and development of embedded systems. A distinct class of these operating systems is real-time operating systems (RTOSs) that can be used to develop embedded systems, which have hard and/or soft real-time requirements on small microcontrollers (MCUs). RTOSs offer the basic support for developing embedded systems with applicability in a wide range of fields such as data acquisition, internet of things, data compression, pattern recognition, diversity, similarity, symmetry, and so on. The RTOSs provide basic services for multitasking applications with deterministic behavior on MCUs. The services provided by the RTOSs are task management and inter-task synchronization and communication. The selection of the RTOS is very important in the development of the embedded system with real-time requirements and it must be based on the latency in the handling of the critical operations triggered by internal or external events, predictability/determinism in the execution of the RTOS primitives, license costs, and memory footprint.
    [Show full text]
  • RTEMS Classic API Guide Release 6.7B289f6 (23Th September 2021) © 1988, 2020 RTEMS Project and Contributors
    RTEMS Classic API Guide Release 6.7b289f6 (23th September 2021) © 1988, 2020 RTEMS Project and contributors CONTENTS 1 Preface 3 2 Overview 7 2.1 Introduction......................................8 2.2 Real-time Application Systems............................9 2.3 Real-time Executive.................................. 10 2.4 RTEMS Application Architecture........................... 11 2.5 RTEMS Internal Architecture............................. 12 2.6 User Customization and Extensibility......................... 14 2.7 Portability....................................... 15 2.8 Memory Requirements................................. 16 2.9 Audience........................................ 17 2.10 Conventions...................................... 18 2.11 Manual Organization................................. 19 3 Key Concepts 23 3.1 Introduction...................................... 24 3.2 Objects......................................... 25 3.2.1 Object Names................................. 25 3.2.2 Object IDs................................... 26 3.2.2.1 Object ID Format........................... 26 3.2.3 Object ID Description............................. 26 3.3 Communication and Synchronization........................ 28 3.4 Locking Protocols................................... 29 3.4.1 Priority Inversion............................... 29 3.4.2 Immediate Ceiling Priority Protocol (ICPP)................. 29 3.4.3 Priority Inheritance Protocol......................... 30 3.4.4 Multiprocessor Resource Sharing Protocol (MrsP)............. 30 3.4.5
    [Show full text]
  • Curriculum Vitae
    Giorgiomaria Cicero Curriculum Vitae Embedded Software Engineer Personal Information Address Via Vanella tre, 7 Modica(RG) Italy 97015 Mobile +39 3337229346 email [email protected] Date of birth 18 Jan 1989 Education 2014-2017 Master’s Degree (MSc) Embedded Computing Systems, Scuola Supe- riore Sant’Anna, University of Pisa, Pisa. Real-time operating systems for single-core and multi-core, microprocessors, model- based design, software validation/verification, sensory acquisition and processing, mechatronics, digital control systems, robotics, distributed systems, optimization methods, modelling and timing analysis, advanced human-machine interfaces, virtual and augmented reality, dependable and secure systems Grade 110/110 cum laude Thesis Title A dual-hypervisor for platforms supporting hardware-assisted security and virtualization Supervisors Prof. Giorgio Buttazzo & Dr. Alessandro Biondi 2008-2013 Bachelor’s Degree (BsC) IT Engineer, University of Pisa, Pisa. Algorithms, data bases, programming, software engineering, OSs, logical networks, electronic calculators, digital communications, automation, digital and analogue electronics, applied mechanic Grade 97/110 Thesis Title Embedded signal acquisition, storage and transmission for a rocket powered micro-gravity experiment. Supervisors Prof. Luca Fanucci & Dr. Daniel Cesarini 1/4 Experience 2017-present Research Fellow, Retis lab, Tecip Institute, Scuola Superiore Sant’Anna. Working on solutions for real-time cyber-physical systems, Mixed Independent Levels of Security (MILS) systems, low-level cyber-security. Task covered: { Researching and developing temporal and spatial isolation mechanisms for multi- core platforms. { Development of a safe, secure and hard real-time Type-1 Hypervisor for heteroge- neous platform. { Cyber-security solutions in the automotive field, in collaboration with Magneti Marelli. 2015 Trainee, ESTEC - European Space Agency, Noordwijk, The Netherlands.
    [Show full text]
  • Embedded OS Benchmarking
    Operating Systems Benchmarking EEmmbbeeddddeedd OOSS BBeenncchhmmaarrkkiinngg TTechnicalechnical DocumeDocumentnt Amir Hossein Payberah Page 1 of 13 Operating Systems Benchmarking Table of Content 1 Scope .................................................................................................................................. 4 2 RTLinux .................................................................................................................................. 4 3 eCos .......................................................................................................................................... 5 3.1 Introduction ....................................................................................................................... 5 3.2 Feature set ........................................................................................................................................... 6 3.3 Architecture ........................................................................................................................................... 7 3.3.1 Portability and Performance ................................................................................................... 8 3.3.2 The Kernel ................................................................................................................... 8 4 RTEMS ......................................................................................................................................... 9 4.1 Introduction ......................................................................................................................
    [Show full text]
  • In-Vivo Stack Overflow Detection and Stack Size Estimation for Low
    In-Vivo Stack Overflow Detection and Stack Size Estimation for Low-End Multithreaded Operating Systems using Virtual Prototypes Soren¨ Tempel1 Vladimir Herdt1;2 Rolf Drechsler1;2 1Institute of Computer Science, University of Bremen, Bremen, Germany 2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany [email protected], [email protected], [email protected] Abstract—Constrained IoT devices with limited computing As the stack space is also statically allocated at compile- resources are on the rise. They utilize low-end multithreaded time, the programmer must choose an appropriate maximum operating systems (e.g. RIOT) where each thread is assigned a stack size before deploying the software. If the code executed fixed stack size during the development process. In this regard, it is important to choose an appropriate stack size which does in a given thread does not use the allocated stack space not cause stack overflows and at the same time does not waste in its entirety, memory is wasted thus potentially causing scarce memory resources by overestimating the required thread increased production costs. If the stack size—chosen by the stack size. programmer—is too small for the thread using it, a stack In this paper we propose an in-vivo technique for stack overflow might occur. overflow detection and stack size estimation that leverages Virtual Prototypes (VPs) and is specifically tailored for low-end On conventional devices, stack overflows will typically multithreaded IoT operating systems. We focus on SystemC- result in a crash due to the violation of employed memory based VPs which operate on the TLM abstraction level.
    [Show full text]