William Krivit, MD

Total Page:16

File Type:pdf, Size:1020Kb

William Krivit, MD http://www.med.umn.edu/peds/bmt/faculty/williamkrivit/home.html Go DEC JAN AUG 9 captures 17 17 Jan 06 - 14 Jun 09 2005 2006 2007 Return to: Pediatrics : Medical School : Academic Health Center : myU : U of M Home One Stop | Directories | Search U of M Home > Department of Pediatrics > Blood and Marrow Transplantation > Faculty and Staff > William For Patients and Families Krivit, M.D. Research William Krivit, M.D. Education Faculty and Staff Krivit November 28, 1925 - December 8, 2005 Memorial Celebration on Saturday, January 21, 2006 News & Events Professor, Emeritus Contact Us Mayo Mail Code 477 420 Delaware Street SE Minneapolis, MN 55455 Peds BMT Home Phone: (612) 624.9970 Fax: (612) 626.4595 [email protected] William Krivit, M.D., Ph.D., is a Professor (Active Emeritus) of Pediatrics at the University of Minnesota. Dr. Krivit received his M.D. Degree from Tulane University in 1948 and his Ph.D. at the University of Minnesota in 1958 where he has been on staff since 1951. He is board certified in Pediatrics and Pediatric Hematology/Oncology. Over the years, Dr. Krivit has trained over 75 fellows and many represent some of the most influential people in their fields. He has also published over 400 manuscripts. Dr. Krivit's early career centered on improving the outcome for children with malignant diseases. In 1974 Dr. Krivit, along with Drs. Mark Nesbit and John Kersey developed the University of Minnesota Blood and Marrow Pediatric Transplant Program - one of the first pediatric transplant programs in the country. Subsequently, Dr. Krivit pioneered the use of allogeneic BMT in the treatment of mucopolysaccharidosis, including Hurler syndrome (MPS I-H); Maroteaux Lamy (MPS VI) and Sly syndrome (MPS VII) and leukodystrophies, including globoid cell leukodystrophy (Krabbe), metachromatic leukodystrophy and adrenoleukodystrophy. Other related diseases include, the sphinglolipidosis (Gaucher disease type III and Sandhoff disease) and the glycoproteinosis, (mannosidosis, fucosidosis and aspartylglucosaminuria), as well as, Wolman disease (acid lipase deficiency). The idea is that allogeneic stem cells and their progeny can adequately transfer the missing enzyme. Awards and Honors 2002 Recipient, Leroy E. Hoeck Distinguished Scholar Award, 16th Annual Advances in Pediatrics Educational and Scientific Forum, Children's Hospital, Washington, DC 2003 Recipient, Distinguished Career Award from the American Society of Pediatric Hematology/Oncology 2004 WORLD Organization for Lysosomal Storage Disease Outstanding Achievement Other "FIRSTS" include: 1956 Association of leukemia with Down Syndrome 1960 Use of heparinized blood for infant exchange transfusions 1960 Overwhelming infection after splenectomy 1962 Coagulation abnormalities after open heart surgery 1963 Cholestyramine for intrahepatic biliary atresia 1964 Use of Vinblastine in the treatment of Langerhans cell histiocytosis 1964 Transient myeloproliferative disease in infants with Down Syndrome 1968 Randomized trial of cyclic vs. sequential maintenance therapy for Acute Lymphocytic Leukemia 1968 Single vs. multiple dose Actinomycin D for Wilms' tumor 1969 ?-1 antitrypsin deficiency 1970 Enzyme replacement in Fabry disease 1972 Correction of some inborn errors by renal transplantation 1973 In utero diagnosis of inborn error of metabolism 1977 Coagulation disorders after L'Asparaginase treatment 1979 Use of VP-16 in childhood cancers 1979 Virally Associated Hemophagocytic Syndrome 1979 Virally Associated Hemophagocytic Syndrome 1980 BMT for osteopetrosis 1981 Association of Shwachman syndrome and leukemia 1984 BMT for mucopolysaccharidoses (with long term follow-up) 1987 Use of Carboplatin in childhood cancer 1990 BMT for leukodystrophy 1992 Neuropsychological outcomes in metachromatic leukodystrophy 1994 Scoring method for Brain MRI abnormalities in adrenoleukodystrophy Research Interests 1. Transplantation of hematopoietic stem cells in the treatment of mucopolysaccharidosis, leukodystrophies. sphinglolipidosis , glycoproteinosis and Wolman disease. Long term effects on neuropsychometric function comparative studies with non-transplant strategy 2. Infusing mesenchymal stem cells to enhance enzyme replacement after allogeneic hematopoietic stem cell transplantation. Selected Recent Publications Krivit W, Shapiro E, Kennedy W, Lipton M, Lockman L, Smith S, Summers GC, Wenger DA, Tsai MM, Ramsay NKC, Kersey JH, Yao JK, Kaye E: Effective Treatment of Late Infantile Metachromatic Leukodystrophy by Bone Marrow Transplantation. N Eng J Med 3321:28-32, 1990. Loes DJ, Stillman AE, Hite S, Shapiro E, Lockman L, Latchaw RE, Moser H, Krivit W: Childhood cerebral form of adrenoleukodystrophy: Short-term effect of bone marrow transplantation on brain MR observations. Am J Neuro Radiol 15(9)1767-1771, 1994. Peters C, Balthazor M, Shapiro EG, King RJ, Kollman C, Hegland JD, Henslee-Downey J, Trigg ME, Cowan MJ, Sanders J, Bunin N, Weinstein H, Lenarsky C, Falk P, Harris R, Bowen T, Williams TE, Grayson GH, Warkentin P, Sender L, Cool VA, Crittenden M, Whitley CB, Packman S, Kaplan P, Lockman LA, Anderson J, Krivit W, Dusenbery K, Wagner J: Outcome of unrelated donor bone marrow transplantation in forty children with Hurler syndrome. Blood 87(11):4894-4902, 1996. Peters C, Shapiro EG, Anderson J, Henslee-Downey PJ, Klemperer MR, Cowan MJ, Saunders EF, deAlarcon PA, Twist C, Nachman JB, Hale GA, Harris RE, Rozans MK, Kurtzberg J, Grayson GH, Lenarsky C, Wagner JE, Krivit W, and the members of The Storage Disease Collaborative Study Group: Hurler Syndrome: II. Outcome of HLA-genotypically identical sibling and HLA- haploidentical related donor bone marrow transplantation in fifty-four children with Hurler syndrome. Blood 91(7):2601-2608, 1998. Krivit W, Peters C, Shapiro E. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux- Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 12(2):167-176, 1999. Koc O, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, BenYoseph Y, Gerson SL, Lazarus HM, Caplan AI, Watkins PA, Krivit W. Bone marrow derived mesenchymal stem cells remain host derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27(11):1675-1681, 1999. Shapiro E, Krivit W, Lockman L, Jambaque I, Peters C, Cowan M, Harris R, Blanche S, Bordigoni P, Loes D, Ziegler R, Crittenden M, Ris D, Berg B, Cox C, Moser H, Fischer A, Aubourg P. Long-term effect of bone-marrow transplantation for childhood- onset cerebral X- linked adrenoleukodystrophy. Lancet 356:713-718, 2000. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS- 1H). Bone Marrow Transplant 30(4):215-222, 2002. Krivit W. Stem cell bone marrow transplantation in patients with metabolic storage diseases. In: Advances in Pediatrics, eds. Barness LA, DeVivo DC, Kaback MM, Morrow G III, Rudolph AM, Tunnessen WW, Jr. Mosby, Inc. Volume 49, Chapter 13, pp. 359-378, 2002. Grewal S, Shapiro E, Braunlin E, Charnas L, Krivit W, Orchard P, Peters C. Continued neurocognitive development and prevention of cardiopulmonary complications after successful BMT for I-cell disease: a long-term follow-up report. Bone Marrow Transplant 32:957-960, 2003. Peters C, Shapiro EG, DeFor TE, Tan Y, Ziegler RS, Krivit W, Grewal SS, Orchard PJ, Abel SL, Lockman LA, Charnas LR, Ramsay NKC, Dusenbery KE, Goldman AI, Loes DJ, Aubourg PR, Shunichi K, Moser HW. Cerebral X-linked adreno-leukodystrophy: The international hematopoietic cell transplantation experience from 1982 to 1999. Blood 104(3):881-888, 2004. Feedback | Notice of Privacy Practices ©2002 Regents of the University of Minnesota. All rights reserved. Trouble seeing the text? | Contact U of M | Privacy The University of Minnesota is an equal opportunity educator and employer. Last modified on Tuesday Jan 10, 2006.
Recommended publications
  • Neuroradiologic Findings in Fucosidosis, a Rare Lysosomal Storage Disease
    Neuroradiologic Findings in Fucosidosis, a Rare Lysosomal Storage Disease James M. Provenzale, Daniel P. Barboriak, and Katherine Sims Summary: Fucosidosis is a rare lysosomal storage disorder with vacuolated secondary lysosomes containing some fine the clinical features of mental retardation, cardiomegaly, dysos- fibrillar material and lamellated membrane structures. tosis multiplex, progressive neurologic deterioration, and early A magnetic resonance (MR) examination at the age of death. The neuroradiologic findings in two patients are reported, 10 years showed confluent regions of hyperintense signal and include abnormalities within the globus pallidus (both pa- on T2-weighted images in the periventricular regions, tients) and periventricular white matter (one patient). most prominent surrounding the atria of the lateral ventri- cles. Hyperintense signal was noted in the globus pallidus Index terms: Brain, metabolism; Degenerative disease, Pediatric on T1-weighted images, with corresponding hypointense neuroradiology signal on T2-weighted images (Fig 1). Fucosidosis is a rare metabolic disorder caused by decreased amounts of the enzyme Case 2 a-L-fucosidase, which results in the accumula- A 2-year-old boy was examined for speech delay and tion of fucose-rich storage products within psychomotor retardation. He was born at term after a many organs, including the brain. Patients with normal pregnancy, and appropriate development oc- this disorder usually have delayed intellectual curred during the first year of life. However, by age 2 years, and motor development, and often die within the patient had not developed speech, exhibited autistic the first decade of life. Computed tomographic behavior, and performed motor tasks poorly. Physical ex- (CT) findings have been reported in a few cases amination findings included coarsened facial features, nar- (1, 2).
    [Show full text]
  • Childhood Dementia Initiative
    Childhood Dementia in Australia: quantifying the burden on patients, carers, the healthcare system and our society Prepared by: Dominic Tilden, Madeline Valeri and Magda Ellis THEMA Consulting Pty Ltd www.thema.net Prepared for: Childhood Dementia Initiative www.childhooddementia.org THEMA Consulting Report (2020). Childhood Dementia in Australia: quantifying the burden on patients, carers, the healthcare system and our society. www.childhooddementia.org/burdenstudy Released on the 18th November 2020 Sydney, Australia. © Childhood Dementia Initiative 2020 Website address for further details. www.childhooddementia.org KEY POINTS : Childhood dementia is a recognised, albeit little known group of disorders, comprised of more than 70 individual genetic conditions. : Childhooddementiadisordersareprogressiveanddevastatinginnatureandposeasignificantlycomplex medicalchallenge,withpatientstypicallyrelyingonfulltimesupportivecareandextensivehealthcare services in the mid-later stages of the disease. : ThisstudydemonstratesforthefirsttimetheburdenassociatedwithchildhooddementiainAustralia, the tremendous negative impact it has on affected children, families and the community, and the resulting economic costs. : Effective therapeutic intervention remains an unmet clinical need for the vast majority of childhood dementia disorders. : It is estimated that the collective incidence of disorders that cause childhood dementia is 36 per 100,000 live births. This equates to 129 births in Australia each year. : In 2021, it is estimated there will be 2273 Australians
    [Show full text]
  • Geting Processes
    Translational Science of Rare Diseases 4 (2019) 133–157 133 DOI 10.3233/TRD-190047 IOS Press Practical management of lysosomal storage disorders (LSDs) Pranoot Tanpaiboona,b,∗ aAdvanced Diagnostics Genetics, Genomics and R&D, Quest Diagnostics, San Juan Capistrano, CA, USA bChildren’s National Rare Disease Institute, Michigan Ave NW, Washington, DC, USA Abstract. Lysosomal Storage Disorders (LSDs) comprise a group of disorders causing defects at the organelle and sub- organelle level with a wide range of pathophysiologies and clinical consequences. Signs and symptoms of LSDs involve multiple organ systems. The main pathological mechanism of most LSDs was previously thought to be cytotoxic effects of a specific storage substance secondary to functional impairment or insufficient lysosomal enzymes. Other pathophysiologic mechanisms of LSDs have been discovered such as dysfunction of cell signaling, disturbance of cell homeostasis, inflamma- tory process and dysfunction of autophagy. The goal of treatment is to balance equilibrium of the enzyme and the accumulated substance. Replacing deficient enzyme through exogenous enzyme replacement therapy (ERT) or stem cell transplantation has been the main method of treatment for several years. The ability of ERT to alleviate neurologic symptoms is limited owing to the inability of the exogenous enzyme to cross the blood-brain barrier. The benefit of stem cell transplantation on neurologic symptoms has been demonstrated for Hurler syndrome, but it is not clear for most LSDs. Other strategies, such as gene therapy, have been under development to overcome this limitation and provide a better outcome. Early treatment or pre-symptomatic treatment could also slow disease progression and improve prognosis.
    [Show full text]
  • 4Th Glycoproteinoses International Conference Advances in Pathogenesis and Therapy
    Program & Abstracts 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE ADVANCES IN PATHOGENESIS AND THERAPY ISMRD ST. LOUIS, MISSOURI, UNITED STATES Program & Abstracts I SM R D ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts ISMRD would like to say A Very Special Thank You to the following organizations and companies who have very generously given donations and sponsorship to support the 4th International Conference on Glycoproteinoses THE PRENILLE EDWARD MALLINCKRODT FOUNDATION JR FOUNDATION MARK HASKINS I SM R D 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2015 ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts ISMRD is very proud to display 10 featured Expression of Hope artworks to be Auctioned at the Gala Dinner. These beautiful prints are from Genzyme’s featured Artwork selection. Contents Welcome 1 SCIENTIFIC COMMITTEE: Stuart Kornfeld ISMRD Mission & Governance 3 (Chair, Scientifi c Planning Committee) Steve Walkley Sara Cathey ISMRD General Information 5 Richard Steet Sean Thomas Ackley, Philippines Miriam Storchli, Switzerland Alessandra d’Azzo ‘Hope’ by Sarah Noble, New Zealand Scientifi c Program 9 FAMILY CONFERENCE COMMITTEE: Family Program for Mucolipidosis 11 Jenny Noble (Conference Organiser) Jackie James (Conference Organiser Family Program For Alpha Mannosidosis /Sialidosis/ 13 - St. Louis) Fucosidosis/Aspartylglucosaminuria Mark Stark John Forman ‘All around the world’ by Zih Yun Li , Taiwan Childrens Program 16 Susan Kester Carolyn Paisley-Dew Tish Adkins Abstracts 17 Sara DeAngelis, Russia Gayle Rose, United States Speaker Profi les 60 Delegates 81 Helen Walker, Australia Nicklas Harkins, Canada Naomi Arai, Japan David Wentworth, Serbia I SM R D 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2015 ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts On behalf of the Scientifi c Planning Committee, I want to extend a warm welcome to all the investigators and Welcome! families who have traveled to St.
    [Show full text]
  • DIAGNOSIS and THERAPIES for MUCOPOLYSACCHARIDOSES by Francyne Kubaski a Dissertation Submitted to the Faculty of the University
    DIAGNOSIS AND THERAPIES FOR MUCOPOLYSACCHARIDOSES by Francyne Kubaski A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences Spring 2017 © 2017 Francyne Kubaski All Rights Reserved DIAGNOSIS AND THERAPIES FOR MUCOPOLYSACCHARIDOSES by Francyne Kubaski Approved: __________________________________________________________ Robin W. Morgan, Ph.D. Chair of the Department of Biological Sciences Approved: __________________________________________________________ George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: __________________________________________________________ Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Erica M. Selva, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Shunji Tomatsu, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Robert W. Mason, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • International Conference
    5TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE Rome, Italy November 1-4 2017 EMBRACING INNOVATION ADVANCING THE CURE PROGRAM & ABSTRACTS 5TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE ROME, ITALY NOVEMBER 1-4 2017 EMBRACING INNOVATION ADVANCING THE CURE ISMRD would like to say a very special thank you to the following organizations and companies who have very generously given donations to support the 5th International Conference on Glycoproteinoses. ISMRD is an internationally focused not-for-profi t organization whose mission is to advocate for families and patients aff ected by one of the following disorders. Alpha-Mannosidosis THE WAGNER FOUNDATION Aspartylglucosaminuria Beta-Mannosidosis Fucosidosis Galactosialidosis ISMRD is very grateful for all the help and support that Symposia has given us Sialidosis (Mucolipidosis I) in the organization of our Conference on-the-ground support in Rome. Mucolipidosis II, II/III, III alpha/beta Mucolipidosis III Gamma Schindler Disease EMBRACING INNOVATION ADVANCING THE CURE SCIENTIFIC COMMITTEE: Alessandra d’Azzo CHAIR Contents Amelia Morrone Italy Richard Steet USA Welcome 2 Heather Flanagan-Steet USA ISMRD Mission & Governance 4 Dag Malm Norway ISMRD General Information 6 Thomas Braulke Dedicated to helping patients Germany in the rare disease community Stuart Kornfeld with unmet medical needs Scientifi c Program 10 USA Ultragenyx Pharmaceutical Inc. is a clinical-stage Family Program 14 ISMRD CONFERENCE biopharmaceutical company committed to creating new COMMITTEE: therapeutics to combat serious,
    [Show full text]
  • Early Clinical Signs in Lysosomal Diseases
    Rare Diseases Meeting Proceedings Early clinical signs in lysosomal diseases Camelia Alkhzouz1,2, Diana Miclea1,2, Simona Bucerzan1,2, Cecilia Lazea1,2, Ioana Nascu2, Paula Grigorescu Sido2 1) Iuliu Hatieganu University of Abstract Medicine and Pharmacy, Cluj-Napoca, Background and aim. The lysosomal storage diseases are a group of monogenic Romania diseases with multisystemic impairment and chronic progression induced by the 2) Center of Expertise for Rare deficiency of lysosomal acid hydrolases involved in the breakdown of various Diseases Lysosomal Diseases, Clinical macromolecules. The accumulation occurs in the macrophages of the reticule- Emergency Hospital for Children, Cluj, endothelial system and causes enlargement and functional impairment. The mainly Romania involved organs are the brain, liver, spleen, bones, joints, airways, lungs, and heart. The aim of this study was to evaluate early symptoms, signs and the delay in the diagnosis of different lysosomal diseases. Methods. The medical documentation of 188 patients with lysosomal storage disorders, aged 1-70 years, were analyzed. All these patients were specifically diagnosed, by enzyme and molecular assay. Results. The age of clinical signs onset varies in different type of lysosomal diseases, from the first months of life or early childhood in severe form, to adulthood in attenuated forms. The delay between the clinical signs onset and specific diagnosis ranged from 0.5 months to 57.91 years. Conclusions. The lysosomal storage diseases are rare diseases with childhood onset,
    [Show full text]
  • Childhood Dementia Initiative
    the case for urgent action “Childhood dementia. The fact that these two words go together is appalling. We need to recognise this as a serious and urgent issue and fix it.” Sean Murray, Director, Childhood Dementia Initiative Childhood Dementia Initiative (2020). Childhood Dementia: the case for urgent action. www.childhooddementia.org/whitepaper Released on the 18th November 2020 Sydney, Australia. © Childhood Dementia Initiative 2020 Website address for further details. www.childhooddementia.org 3 Today, there are an estimated 700,000 children and young people living with dementia worldwide. Their short lives will be shaped by progressive brain damage, social isolation, pain and suffering. Many will not live into adulthood, some will die in their infant years. With less than 5% of all identified conditions that lead to childhood dementia having a treatment, it is time to transform the way we approach therapy development and management of these disorders. Children are dying, we need to act; fast. In 2013, following the shock diagnosis of both of my children with Sanfilippo Syndrome, a condition that causes childhood dementia, I started the Sanfilippo Children’s Foundation. In the 7 years that followed, we raised over $9 million towards our cause and transformed funding and management of Sanfilippo research in Australia; the work of the Foundation continues. But during this time I was continuously and consistently dismayed watching small, often family-run foundations around the world all struggling to raise funds and drive research. Researchers, although well-intentioned, were also severely underfunded, and incentives or imperatives for research to be undertaken across multiple disorders with similar presentation were non-existent.
    [Show full text]
  • Eira Kelo | Kelo | 156 | Eira
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE dissertations provided by UEF Electronic Publications | 156 | Eira| 156 Kelo | Eira Kelo Catalytic and Therapeutic Characteristics of Human Aspartylglycosaminuria (AGU), Recombinant Glycosylasparaginase an inherited lysosomal storage Catalytic and Therapeutic Characteristics Human of Recombinant Glycosylasparaginase and Bacterial L-asparaginases Eira Kelo disease, is caused by the deficient and Bacterial L-asparaginases activity of a lysosomal enzyme glycosylasparaginase (GA). Catalytic and Therapeutic Loss of GA activity results in the Characteristics of Human accumulation of glycoasparagines in tissues leading to progressive Recombinant Glycosylasparaginase psychomotor retardation and a shortened life span. Currently there is no cure for and Bacterial L-asparaginases AGU. In this study, the effectiveness of enzyme replacement therapy (ERT) with human recombinant GA was evaluated in the mouse model of AGU. Furthermore, the enzymatic properties of GA and bacterial asparaginases were compared. This study reveals new therapeutic and catalytic properties of human GA and bacterial asparaginases. Publications of the University of Eastern Finland Dissertations in Health Sciences Publications of the University of Eastern Finland Dissertations in Health Sciences isbn 978-952-61-1045-5 EIRA KELO EIRA KELO Catalytic and therapeutic characteristics of Catalytic and therapeutic characteristics of human recombinant glycosylasparaginase human recombinant glycosylasparaginase
    [Show full text]
  • Invitasjon Til Å Foreslå Nye Medlemmer I Bioteknologirådet
    Til Legeforeningen her Oslo, 16.07.2018 Høring- Invitasjon til å foreslå nye medlemmer i Bioteknologirådet Styret i PSL har behandlet saken og vil i den anledning foreslå som nye medlemmer i Bioteknologirådet: styremedlem Dag Malm og medlem Even Holt CV for begge de foreslåtte kandidatene følger vedlagt (se de påfølgende sider). For styret i Praktiserende spesialisters landsforening /PSL Frøydis Olafsen leder Praktiserende spesialisters landsforening • Postboks 1152 Sentrum • NO-0107 Oslo Besøksadresse: Legenes hus • Akersgt. 2 Telefon: +47 23 10 90 00 • Faks: +47 23 10 91 50 • Bankgiro 5074.09.95615 CURRICULUM VITAE Updated: Jan 15th 2017 Dr. med. Dag MALM (Last name Jacobsen until 021085), Born July 1th 1953 in Tromsø, Norway: Citizenship: Norwegian Civil status: Married Children: 3 (Range 25-33 years, Mean 28 years) Languages spoken: Scandinavian, English and German (fluently). French and Spanish (poorly). Education: University Qualifying Examination, Kongsbakken College, Tromsø, 1971. Final Examination in Medicine, University of Göttingen, Germany 1977 (2.part) and 1978 (Final part). Norwegian Additional Examination at the Universitety of Oslo mars 1976. License to practice as a Medical Doctor: Spring 1978 (Germany) and 1980 (Norway). Specialist in internal medicine 1985. Specialist in digestive tract disorders (Gastroenterology, Hepatology and Endoscopy combined) 1990. Doctoral Degree 1995 on the topic "Studies on the intracellular regulation of insulin secretion in pancreatic islets: An experimental study with special reference to the effect of cholecystokinin, somatostatin, and galanin on the hydrolysis of phosphatidyl inositol." Service in hospitals: - District General Hospital Alfeld, Germany, Dept. Surgery, Intern 020577-310777 3 months. - District General Hospital Alfeld, Germany, Dept. Medicine, Intern 010877-301177 4 months.
    [Show full text]
  • Terryn Thesis.Indb
    Ghent University Faculty of Medicine and Health Sciences Department of Internal Medicine Nephrology Division Screening for Fabry disease indications, methods and implications Wim Terryn Thesis submitted in fulfilment of the requirements for the degree of Doctor in Medical Sciences 2013 Promotors: prof. dr. Raymond Vanholder prof. dr. Bruce Poppe Faculteit Geneeskunde en Gezondheidswetenschappen Departement Interne Geneeskunde Divisie Nefrologie Screening voor de Ziekte van Fabry indicaties, methoden en implicaties Wim Terryn Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Medische Wetenschappen 2013 Promotoren: prof. dr. Raymond Vanholder prof. dr. Bruce Poppe Promotors Prof. dr. Raymond Vanholder Ghent University, Faculty of Medicine and Health Sciences Department of Internal Medicine, Nephrology Division Prof. dr. Bruce Poppe Ghent University, Faculty of Medicine and Health Sciences Center for Medical Genetics Members of the examination committee Prof. dr. Elfriede Debaere Universiteit Gent, België Prof. dr. Linda De Meirleir Vrije Universiteit Brussel, België Prof. dr. Olivier Devuyst Universität Zürich, Switserland Dr. Gabor Linthorst Universiteit van Amsterdam, Nederland Prof. dr. Koen Pameleire Universiteit Gent, België Prof. dr. Rudy Van Coster Universiteit Gent, België Prof. dr. Koen Vandewoude Universiteit Gent, België © Wim Terryn Screening for Fabry disease: indications, methods and implications / W. Terryn Universiteit Gent, Campus UZ Gent, De Pintelaan 185, 9000 Gent Thesis Universiteit Gent 2013 – with
    [Show full text]
  • Our Mission and Vision CONTENTS • President's Piece
    ISMRD, a 501 © not-for-profit organization, FEIN 53-2164838 | website www.ismrd.org Our Mission and Vision https://www.facebook.com/groups/ 82945687520/ ISMRD is the leading advocate for families world-wide affected by Glycoprotein Storage Diseases. https://twitter.com/ISMRD Through partnerships built with medicine, science and industry Donations This we seek to detect and cure these diseases, and to provide a global network of support and information. ISMRD is a 501(c) charitable organisation based in the United States serving a global constituency. We provide We seek a future in which children with Glycoprotein Storage our services, which include our newsletter, website, Disease can be detected early, treated effectively and go on to outreach activities and support of research, without live long, healthy and productive lives. requesting monthly dues or any other financial restrictions. We gratefully accept donations that will ISMRD supports the following disorders enable us to continue toward our goal of a future free of the tragic consequences of Glycoprotein Storage Diseases. Alpha Mannosidosis, Aspartylglucosaminuria, Beta Mannosidosis, Fucosidosis, Galactosialidosis, Mucolipidosis II alpha/beta (I-Cell Donations can be made via our website using Disease), Mucolipidosis III alpha/beta (Pseudo-Hurler Polydystrophy), Mucolipidosis III Gamma, Schindler Disease and Sialidosis ISMRD Board of Directors CONTENTS President's Piece President Jackie James Treasurer Mark Stark Blessing from the Pope Vice President, Administration Jenny Noble
    [Show full text]