PHASE DIAGRAMS Phase –A Chemically and Structurally Homogenous Region of a Material

Total Page:16

File Type:pdf, Size:1020Kb

PHASE DIAGRAMS Phase –A Chemically and Structurally Homogenous Region of a Material PHASE DIAGRAMS Phase –a chemically and structurally homogenous region of a material. Region of uniform physical and chemical characteristics. Phase boundaries separate two distinct phases. A single phase system is called homogeneous. A system with two or more phases is called heterogeneous. Phase Diagram –a graphic representation showing the phase or phases present for a given composition, temperature and pressure. Component –the chemical elements which make up the alloy. Solvent atoms: primary atomic species. Host atoms Solute atoms: the impurities. Normally the minor component Solubility Limit ‐ Maximum concentration of solute atoms that may dissolve in the solvent to form a solid solution. The excess of solute forms another phase of different composition. Example: water‐sugar Phase Diagrams of Pure Substances •Predicts the stable phase as a function of Ptotal and T. Example: water can exist in solid, liquid and vapor phases, depending on the conditions of temperature and pressure. • Characteristic shape punctuated by unique points. –Phase equilibrium lines –Triple Point (three different phases of water in equilibrium) – Critical Point Example: In the pressure‐temperature (PT) phase diagram of water there exists a triple point at low pressure (4.579 torr) and low temperature (0.0098oC) where solid, liquid and vapor phases of water coexists. Vaporization Line –Liquid and vapor coexists Freezing Line – Liquid and solid coexist. Sublimation Line – Solid and vapor coexist Phase ‐ Any portion including the whole of a system, which is physically homogeneous within it and bounded by a surface so that it is mechanically separable from any other portions. Gibbs Phase Rule From thermodynamic considerations, J.W. Gibbs (1839‐1903 American physicist –University of Yale) derived the following equation: P + F = C + 2 Where P = number of phases which coexists in a given system F = degrees of freedom C = number of components in the system 2 = one can vary temperature and pressure F = 0 zero degrees of freedom. Neither P or T can be change (a point – invariant point) F = 1 one degree of freedom. One variable (P or T) can be changed independently (a line) F = 2 two degrees of freedom. Two variables (P or T) can be changed independently (an area). Schematic unary phase diagram for magnesium, showing the melting and boiling temperatures at one atmosphere pressure. C= 1 for pure magnesium Point A: P= 1 for pure liquid phase 2+C=F+P 2+1=F+1 F=2 degrees of freedom – change pressure and temperature in liquid Phase. Point B: P= 2 for liquid and solid 2+C=F+P 2+1=F+2 F=1 degrees of freedom – change pressure or temperature (and the other variable is dependent –to stay on the line). Point X: P= 3 (liquid, solid and vapor coexist) 2+C=F+P 2+1=F+3 F=0 degrees of freedom –pressure and temperature are fixed at the the single point called the triple point. Example ‐ For pure substance where P and T can be changed P + F = C + 2 = 1 + 2 = 3 Pure substance in a triple point, then C = 1 (one component) and P = 3 (number of phases that coexist) The value of F is zero (zero degrees of freedom) the three phases coexist in a point. ‐ For pure substance where P and T can be changed P + F = 1 + 2 = 3 Pure substance in a freezing line, then C = 1 (one component) and P = 2 (number of phases that coexist) The value of F is one (one degree of freedom) the two phases (solid and liquid) coexist in a line. Solubility: The amount of one material that will completely dissolve in a second material without creating a second phase. Unlimited solubility: When the amount of one material that will dissolve in a second material without creating a second phase is unlimited. Limited solubility ‐ When only a maximum amount of a solute material can be dissolved in a solvent material. Solid Solution: Solid‐solution strengthening ‐ Increasing the strength of a metallic material via the formation of a solid solution. Dispersion strengthening ‐ Strengthening, typically used in metallic materials, by the formation of ultra‐fine dispersions of a second phase. The effects of several alloying elements on the yield strength of copper. Resistance to dislocation motion (loss in ductility) Microstructure The structure observed under a microscope Al Brake –more than Iron‐chromium alloy –one phase one phase (solid solution) Phase Equilibria • Free energy: a function of the internal energy of a system • Equilibrium: a system is at equilibrium if its free energy is at a minimum • Phase equilibrium: for a system which has more than one phase • Phase Diagram is a diagram with T and Composition as axes. They define the stability of the phases that can occur in an alloy system at constant pressure (P). The plots consist of temperature (vertical) axis and compositional (horizontal) axis. • Constitution: is described by (a) the phases present (b) the composition of each phase (c) the weight fraction of each phase Isomorphous Phase Diagrams Binary phase diagram ‐ A phase diagram for a system with two components (C=2). Ternary phase diagram ‐ A phase diagram for a system with three components (C=3). Isomorphous phase diagram ‐ A phase diagram in which components display unlimited solid solubility. Liquidus temperature ‐ The temperature at which the first solid begins to form during solidification. Solidus temperature ‐ The temperature below which all liquid has completely solidified. Freezing range – between the liquidus and solidus. Binary isomorphous systems • Binary alloy: A mixture of two metals is called a binary alloy and constitute a two‐component system. •Each metallic element in an alloy is called a separate component. [Sometimes a compound is considered a component, (e.g., iron carbide)] • Isomorphous System: In some metallic systems, the two elements are completely soluble in each other in both the liquid and solid states. In these systems only a single type of crystal structure exists for all compositions of the components (alloy) and therefore it is called isomorphous system. Example: Binary Isomorphous System (Cu –Ni) T<1085oC: Cu & Ni are mutually soluble in solid state –complete solubility → •both have the same FCC structures, •atomic radii and electronegativities are nearly identical •similar valences → isomorphous Interpretation of Phase Diagrams Constitution: is described by (a) the phases present (b) the composition of each phase (c) the weight fraction of each phase (a) Phases Present Point A: at T=1100oC 60wt% Ni – 40wt% Cu Only α phase is present Point B: at T= 1250oC 35wt%Ni –65wt% Cu Both α & liquid phases are present at equilibrium (b) Composition of each phase Single phase: Point A: 60wt%Ni –40%Cu alloy at 1100oC Two‐phase region: Tie line: across the two‐ phase region at the temperature of the alloy Point B: T=1250oC Composition of Liquid phase: CL=31.5wt%Ni – 68.5%Cu Composition of α phase: Cα=42.5wt%Ni‐ 57.5wt%Cu (c) Weight fraction of each phase Single phase: 100% Ex: Point A: 100% α phase Two‐phase region: Ex: Point B LEVER RULE (Inverse Lever Rule) S R W = W = L RS+ α RS+ CCα − o CCo− L WL = Wα = CCα − L CCα − L co− c L35− 31. 5 Example: Point B: Wα = = . 0 = or 32 32% cs− 42 c L 5..− 31 5 C0 = 35wt%Ni cs− c o42. 5− 35 Cα = 42.5%, CL = 31.5% WL = = . 0 = or 68 68% cs− 42 c L 5..− 31 5 Volume fraction For an yoall consisting of α and β phases, the volume onfracti of the α phase is defined as vα Vα = , VVα+ β =1 Then, the weight fractions are vα+ v β v ρ vβρ β ν ν W = α α ; W = Where α and β are the α β volumes of α and β αvρ α+ v β ρ β αvρ α+ v β ρ β W β W α ρ α ρ β V α = V β = W W β W W α + α + β ρ α ρ β ρ α ρ β Derivation of the lever rule 1) All material must be in one phase or the other: WWα + L =1 2) Mass of a component that is present in both phases equal to the mass of the component in one phase + mass of the component in the second phase: Wα c α+ L W L= c o c 3) Solution of these equations gives us the Lever rule. c− c c− c W = o L W = α o α c− c L α L cα − cL Equilibrium Cooling ‐ Development of Microstructure in Isomorphous Alloys Example: 35wt%Cu‐65wt%Ni system – Slow cooling from point a to point e a: 1300oC: complete liquid with 35wt%Cu- 65wt%Ni b: ~1260oC: first solid begin to form (α-46wt%Ni) c: ~1250oC: α-43wt%Ni, L- 32wt%Ni d:~1220oC: last liquid to solidify e: 35wt%Cu – 65wt%Ni solid phase Nonequilibrium Cooling ‐ Development of Microstructure in Isomorphous Alloys Fast cooling Compositional changes require diffusion •Diffusion in the solid state is very slow. ⇒ The new layers that solidify on top of the existing grains have the equilibrium composition at that temperature ⇒ Formation of layered (cored) grains. Tie‐line method to determine the composition of the solid phase is invalid. •The tie‐line method works for the liquid phase, where diffusion is fast. •Solidus line is shifted to the right (higher Ni contents), solidification is complete at lower T, the outer part of the grains are richer in the low‐melting component (Cu). •Upon heating grain boundaries will melt first. This can lead to premature mechanical failure. Complete solidification occurs at lower temperature and higher Nickel concentration than equilibrium Solid can’t freeze fast enough: solidus line effectively shifted to higher Ni concentrations.
Recommended publications
  • Recent Progress on Deep Eutectic Solvents in Biocatalysis Pei Xu1,2, Gao‑Wei Zheng3, Min‑Hua Zong1,2, Ning Li1 and Wen‑Yong Lou1,2*
    Xu et al. Bioresour. Bioprocess. (2017) 4:34 DOI 10.1186/s40643-017-0165-5 REVIEW Open Access Recent progress on deep eutectic solvents in biocatalysis Pei Xu1,2, Gao‑Wei Zheng3, Min‑Hua Zong1,2, Ning Li1 and Wen‑Yong Lou1,2* Abstract Deep eutectic solvents (DESs) are eutectic mixtures of salts and hydrogen bond donors with melting points low enough to be used as solvents. DESs have proved to be a good alternative to traditional organic solvents and ionic liq‑ uids (ILs) in many biocatalytic processes. Apart from the benign characteristics similar to those of ILs (e.g., low volatil‑ ity, low infammability and low melting point), DESs have their unique merits of easy preparation and low cost owing to their renewable and available raw materials. To better apply such solvents in green and sustainable chemistry, this review frstly describes some basic properties, mainly the toxicity and biodegradability of DESs. Secondly, it presents several valuable applications of DES as solvent/co-solvent in biocatalytic reactions, such as lipase-catalyzed transester‑ ifcation and ester hydrolysis reactions. The roles, serving as extractive reagent for an enzymatic product and pretreat‑ ment solvent of enzymatic biomass hydrolysis, are also discussed. Further understanding how DESs afect biocatalytic reaction will facilitate the design of novel solvents and contribute to the discovery of new reactions in these solvents. Keywords: Deep eutectic solvents, Biocatalysis, Catalysts, Biodegradability, Infuence Introduction (1998), one concept is “Safer Solvents and Auxiliaries”. Biocatalysis, defned as reactions catalyzed by bio- Solvents represent a permanent challenge for green and catalysts such as isolated enzymes and whole cells, has sustainable chemistry due to their vast majority of mass experienced signifcant progress in the felds of either used in catalytic processes (Anastas and Eghbali 2010).
    [Show full text]
  • Phase Diagrams
    Module-07 Phase Diagrams Contents 1) Equilibrium phase diagrams, Particle strengthening by precipitation and precipitation reactions 2) Kinetics of nucleation and growth 3) The iron-carbon system, phase transformations 4) Transformation rate effects and TTT diagrams, Microstructure and property changes in iron- carbon system Mixtures – Solutions – Phases Almost all materials have more than one phase in them. Thus engineering materials attain their special properties. Macroscopic basic unit of a material is called component. It refers to a independent chemical species. The components of a system may be elements, ions or compounds. A phase can be defined as a homogeneous portion of a system that has uniform physical and chemical characteristics i.e. it is a physically distinct from other phases, chemically homogeneous and mechanically separable portion of a system. A component can exist in many phases. E.g.: Water exists as ice, liquid water, and water vapor. Carbon exists as graphite and diamond. Mixtures – Solutions – Phases (contd…) When two phases are present in a system, it is not necessary that there be a difference in both physical and chemical properties; a disparity in one or the other set of properties is sufficient. A solution (liquid or solid) is phase with more than one component; a mixture is a material with more than one phase. Solute (minor component of two in a solution) does not change the structural pattern of the solvent, and the composition of any solution can be varied. In mixtures, there are different phases, each with its own atomic arrangement. It is possible to have a mixture of two different solutions! Gibbs phase rule In a system under a set of conditions, number of phases (P) exist can be related to the number of components (C) and degrees of freedom (F) by Gibbs phase rule.
    [Show full text]
  • Copper Alloys
    THE COPPER ADVANTAGE A Guide to Working With Copper and Copper Alloys www.antimicrobialcopper.com CONTENTS I. Introduction ............................. 3 PREFACE Conductivity .....................................4 Strength ..........................................4 The information in this guide includes an overview of the well- Formability ......................................4 known physical, mechanical and chemical properties of copper, Joining ...........................................4 as well as more recent scientific findings that show copper has Corrosion ........................................4 an intrinsic antimicrobial property. Working and finishing Copper is Antimicrobial ....................... 4 techniques, alloy families, coloration and other attributes are addressed, illustrating that copper and its alloys are so Color ..............................................5 adaptable that they can be used in a multitude of applications Copper Alloy Families .......................... 5 in almost every industry, from door handles to electrical circuitry to heat exchangers. II. Physical Properties ..................... 8 Copper’s malleability, machinability and conductivity have Properties ....................................... 8 made it a longtime favorite metal of manufacturers and Electrical & Thermal Conductivity ........... 8 engineers, but it is its antimicrobial property that will extend that popularity into the future. This guide describes that property and illustrates how it can benefit everything from III. Mechanical
    [Show full text]
  • Alloys: Making an Alloy
    Inspirational chemistry 21 Alloys: making an alloy Index 2.3.1 2 sheets In this experiment, students make an alloy (solder) from tin and lead and compare its properties to those of pure lead. Equipment required Per pair or group of students: ■ About 2 g lead ■ About 2 g tin ■ Crucible ■ Pipe clay triangle ■ Bunsen, tripod and heatproof mat ■ Spatula ■ Carbon powder – 1 spatula per student ■ Tongs ■ 2 sand trays or sturdy metal lids ■ Sand ■ Access to a balance ■ Eye protection. Health and safety The most likely incident in this experiment is a student burning themselves so warn them that the equipment will be hot. Pouring molten metal can be hazardous if you are not sure how to use tongs correctly – it would be worth demonstrating how to use them safely. Some tongs in schools do not grip well. Every pair must be checked before the start of the experiment. Eye protection should be worn. Lead is a toxic metal. If it is heated for too long or too high above its melting point it could start to give off fumes. Ensure that the laboratory is well ventilated, warn students against breathing in the fumes given off by their sample during the experiment and tell them to heat the metals no longer than is necessary to get them to melt. 22 Inspirational chemistry Results Hardness testing should show clearly that the alloy is harder than the pure lead. The alloy can be used to scratch the lead convincingly. The lead does not leave a mark on the alloy. (Students may need to be reminded how to do this simple test – just try to scratch one metal with the other.) The density of the alloy should be less than that of the lead, but this test is fairly subjective.
    [Show full text]
  • Definition of Design Allowables for Aerospace Metallic Materials
    Definition of Design Allowables for Aerospace Metallic Materials AeroMat Presentation 2007 Jana Jackson Design Allowables for Aerospace Industry • Design for aerospace metallic structures must be approved by FAA certifier • FAA accepts "A-Basis" and "B-Basis" values published in MIL-HDBK-5, and now MMPDS (Metallic Materials Properties Development and Standardization) as meeting the regulations of FAR 25.613. OR • The designer must have sufficient data to verify the design allowables used. Design Allowables for Aerospace Industry • The FAA views the MMPDS handbook as a vital tool for aircraft certification and continued airworthiness activities. • Without the handbook, FAA review and approval of applicant submittals becomes more difficult, more costly and less consistent. • There could be multiple data submission for the same material that are conflicting or other instances that would require time consuming analysis and adjudication by the FAA. What is meant by A-Basis, B-Basis ? S = Specification Minimum • B-Basis: At least 90% of population A = T equals or exceeds value with 95% 99 confidence. B = T90 • A-Basis: At least 99% of population equals or exceeds value with 95% confidence or the specification minimum when it is lower. Æ Mechanical Property (i.e., FTY, et al) What is the MMPDS Handbook? • Metallic Materials Properties Development and Standardization • Origination: ANC-5 in 1937 (prepared by Army- Navy-Commerce Committee on Aircraft Requirements) • In 1946 the United States Air Force sanctioned the creation of a database to include physical and mechanical properties of aerospace materials. • This database was created in 1958 and dubbed Military Handbook-5 (or MIL-HDBK-5 for short).
    [Show full text]
  • Section 1 Introduction to Alloy Phase Diagrams
    Copyright © 1992 ASM International® ASM Handbook, Volume 3: Alloy Phase Diagrams All rights reserved. Hugh Baker, editor, p 1.1-1.29 www.asminternational.org Section 1 Introduction to Alloy Phase Diagrams Hugh Baker, Editor ALLOY PHASE DIAGRAMS are useful to exhaust system). Phase diagrams also are con- terms "phase" and "phase field" is seldom made, metallurgists, materials engineers, and materials sulted when attacking service problems such as and all materials having the same phase name are scientists in four major areas: (1) development of pitting and intergranular corrosion, hydrogen referred to as the same phase. new alloys for specific applications, (2) fabrica- damage, and hot corrosion. Equilibrium. There are three types of equili- tion of these alloys into useful configurations, (3) In a majority of the more widely used commer- bria: stable, metastable, and unstable. These three design and control of heat treatment procedures cial alloys, the allowable composition range en- conditions are illustrated in a mechanical sense in for specific alloys that will produce the required compasses only a small portion of the relevant Fig. l. Stable equilibrium exists when the object mechanical, physical, and chemical properties, phase diagram. The nonequilibrium conditions is in its lowest energy condition; metastable equi- and (4) solving problems that arise with specific that are usually encountered inpractice, however, librium exists when additional energy must be alloys in their performance in commercial appli- necessitate the knowledge of a much greater por- introduced before the object can reach true stabil- cations, thus improving product predictability. In tion of the diagram. Therefore, a thorough under- ity; unstable equilibrium exists when no addi- all these areas, the use of phase diagrams allows standing of alloy phase diagrams in general and tional energy is needed before reaching meta- research, development, and production to be done their practical use will prove to be of great help stability or stability.
    [Show full text]
  • Chapter 18 Solutions and Their Behavior
    Chapter 18 Solutions and Their Behavior 18.1 Properties of Solutions Lesson Objectives The student will: • define a solution. • describe the composition of solutions. • define the terms solute and solvent. • identify the solute and solvent in a solution. • describe the different types of solutions and give examples of each type. • define colloids and suspensions. • explain the differences among solutions, colloids, and suspensions. • list some common examples of colloids. Vocabulary • colloid • solute • solution • solvent • suspension • Tyndall effect Introduction In this chapter, we begin our study of solution chemistry. We all might think that we know what a solution is, listing a drink like tea or soda as an example of a solution. What you might not have realized, however, is that the air or alloys such as brass are all classified as solutions. Why are these classified as solutions? Why wouldn’t milk be classified as a true solution? To answer these questions, we have to learn some specific properties of solutions. Let’s begin with the definition of a solution and look at some of the different types of solutions. www.ck12.org 394 E-Book Page 402 Homogeneous Mixtures A solution is a homogeneous mixture of substances (the prefix “homo-” means “same”), meaning that the properties are the same throughout the solution. Take, for example, the vinegar that is used in cooking. Vinegar is approximately 5% acetic acid in water. This means that every teaspoon of vinegar contains 5% acetic acid and 95% water. When a solution is said to have uniform properties, the definition is referring to properties at the particle level.
    [Show full text]
  • Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Aluminum Silicon Alloys
    Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Aluminum Silicon Alloys by Hema V. Guthy A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Materials Science and Engineering April 2002 APPROVED: _____________________________________________ Prof. Makhlouf. M. Makhlouf, Major Advisor _____________________________________________ Prof. Richard D. Sisson, Jr Materials Science and Engineering Group Head i ABSTRACT Aluminum-silicon alloys are an important class of commercial non-ferrous alloys having wide ranging applications in the automotive and aerospace industries. Typical aluminum-silicon alloys have two major microstructural components, namely primary aluminum and an aluminum-silicon eutectic. While nucleation and growth of the primary aluminum in the form of dendrites have been well understood, the understanding of the evolution of the Al-Si eutectic is still incomplete. The microstructural changes caused by the addition of strontium to these alloys are another important phenomenon that still puzzles the scientific community. In this thesis, an effort has been made to understand the evolution of the Al-Si eutectic in the presence and absence of strontium through two sets of experiments: (1) Quench experiments, and (2) sessile drop experiments. The quench experiments were designed to freeze the evolution of the eutectic after various time intervals along the eutectic plateau. The sessile drop experiments were designed to study the role of surface energy in the formation of the eutectic in the presence and absence of strontium. Both experiments were conducted on high purity alloys. Using observations from these experiments, possible mechanism(s) for the evolution of the Al-Si eutectic and the effects of strontium on modifying the eutectic morphology are proposed.
    [Show full text]
  • Chapter 10 Gibbs Free Energy Composition and Phase Diagrams of Binary Systems 10.2 Gibbs Free Energy and Thermodynamic Activity
    Chapter 10 Gibbs Free Energy Composition and Phase Diagrams of Binary Systems 10.2 Gibbs Free Energy and Thermodynamic Activity The Gibbs free energy of mixing of the components A and B to form a mole of solution: If it is ideal, i.e., if ai=Xi, then the molar Gibbs free energy of mixing, Figure 10.1 The molar Gibbs free energies of Figure 10.2 The activities of component B mixing in binary systems exhibiting ideal behavior obtained from lines I, II, and III in Fig. 10.1. (I), positive deviation from ideal behavior (II), and negative deviation from ideal behavior (III). 10.3 The Gibbs Free Energy of Formation of Regular Solutions If curves II and III for regular solutions, then deviation of from , is ∆ ∆ For curve II, < , , and thus is a positive quantity ( and Ω are positive quantities). ∆ ∆ ∆ Figure 10.3 The effect of the magnitude of a on the integral molar heats and integral molar Gibbs free energies of formation of a binary regular solution. 10.3 The Gibbs Free Energy of Formation of Regular Solutions The equilibrium coexistence of two separate solutions at the temperature T and pressure P requires that and Subtracting from both sides of Eq. (i) gives 0 or Similarly Figure 10.4 (a) The molar Gibbs free energies of mixing of binary components which form a complete range of solutions. (b) The molar Gibbs free energies of mixing of binary components in a system which exhibits a miscibility gap. 10.4 Criteria for Phase Stability in Regular Solutions For a regular solution, and 3 3 At XA=XB=0.5, the third derivative, / XB =0, 2 2 and thus the second derivative, / XB =0 at XA=0.5 ∆ When α=2 ⇒ the critical value of ∆αabove which phase separation occurs.
    [Show full text]
  • Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying
    materials Article Structure and Properties of Fe–Al–Si Alloy Prepared by Mechanical Alloying Pavel Novák 1,*, Tomáš Vanka 1, KateˇrinaNová 1, Jan Stoulil 1 , Filip Pr ˚uša 1 , Jaromír Kopeˇcek 2 , Petr Haušild 3 and František Laufek 2,4 1 Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic 2 Institute of Physics of the ASCR, v. v. i., Na Slovance 2, Prague 8, 182 21 Prague, Czech Republic 3 Department of Materials, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague 2, 120 00 Prague, Czech Republic 4 Czech Geological Survey, Geologická 6, Prague 5, 152 00 Prague, Czech Republic * Correspondence: [email protected] Received: 3 July 2019; Accepted: 31 July 2019; Published: 2 August 2019 Abstract: Fe–Al–Si alloys have been previously reported as an interesting alternative to common high-temperature materials. This work aimed to improve the properties of FeAl20Si20 alloy (in wt.%) by the application of powder metallurgy process consisting of ultrahigh-energy mechanical alloying and spark plasma sintering. The material consisted of Fe3Si, FeSi, and Fe3Al2Si3 phases. It was found that the alloy exhibits an anomalous behaviour of yield strength and ultimate compressive strength around 500 ◦C, reaching approximately 1100 and 1500 MPa, respectively. The results also demonstrated exceptional wear resistance, oxidation resistance, and corrosion resistance in water-based electrolytes. The tested manufacturing process enabled the fracture toughness to be increased ca. 10 times compared to the cast alloy of the same composition. Due to its unique properties, the material could be applicable in the automotive industry for the manufacture of exhaust valves, for wear parts, and probably as a material for selected aggressive chemical environments.
    [Show full text]
  • Enghandbook.Pdf
    785.392.3017 FAX 785.392.2845 Box 232, Exit 49 G.L. Huyett Expy Minneapolis, KS 67467 ENGINEERING HANDBOOK TECHNICAL INFORMATION STEELMAKING Basic descriptions of making carbon, alloy, stainless, and tool steel p. 4. METALS & ALLOYS Carbon grades, types, and numbering systems; glossary p. 13. Identification factors and composition standards p. 27. CHEMICAL CONTENT This document and the information contained herein is not Quenching, hardening, and other thermal modifications p. 30. HEAT TREATMENT a design standard, design guide or otherwise, but is here TESTING THE HARDNESS OF METALS Types and comparisons; glossary p. 34. solely for the convenience of our customers. For more Comparisons of ductility, stresses; glossary p.41. design assistance MECHANICAL PROPERTIES OF METAL contact our plant or consult the Machinery G.L. Huyett’s distinct capabilities; glossary p. 53. Handbook, published MANUFACTURING PROCESSES by Industrial Press Inc., New York. COATING, PLATING & THE COLORING OF METALS Finishes p. 81. CONVERSION CHARTS Imperial and metric p. 84. 1 TABLE OF CONTENTS Introduction 3 Steelmaking 4 Metals and Alloys 13 Designations for Chemical Content 27 Designations for Heat Treatment 30 Testing the Hardness of Metals 34 Mechanical Properties of Metal 41 Manufacturing Processes 53 Manufacturing Glossary 57 Conversion Coating, Plating, and the Coloring of Metals 81 Conversion Charts 84 Links and Related Sites 89 Index 90 Box 232 • Exit 49 G.L. Huyett Expressway • Minneapolis, Kansas 67467 785-392-3017 • Fax 785-392-2845 • [email protected] • www.huyett.com INTRODUCTION & ACKNOWLEDGMENTS This document was created based on research and experience of Huyett staff. Invaluable technical information, including statistical data contained in the tables, is from the 26th Edition Machinery Handbook, copyrighted and published in 2000 by Industrial Press, Inc.
    [Show full text]
  • Continuous Eutectic Freeze Crystallisation
    CONTINUOUS EUTECTIC FREEZE CRYSTALLISATION Report to the Water Research Commission by Jemitias Chivavava, Benita Aspeling, Debbie Jooste, Edward Peters, Dereck Ndoro, Hilton Heydenrych, Marcos Rodriguez Pascual and Alison Lewis Crystallisation and Precipitation Research Unit Department of Chemical Engineering University of Cape Town WRC Report No. 2229/1/18 ISBN 978-1-4312-0996-5 July 2018 Obtainable from Water Research Commission Private Bag X03 Gezina, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Printed in the Republic of South Africa © Water Research Commission ii Executive summary Eutectic Freeze Crystallisation (EFC) has shown great potential to treat industrial brines with the benefits of recovering potentially valuable salts and very pure water. So far, many studies that have been concerned with the development of EFC have all been carried out (1) in batch mode and (2) have not considered the effect of minor components that may affect the process efficiency and product quality. Brines generated in industrial operations often contain antiscalants that are dosed in cooling water and reverse osmosis feed streams to prevent scaling of heat exchangers and membrane fouling. These antiscalants may affect the EFC process, especially the formation of salts. The first aim of this work was to understand the effects of antiscalants on thermodynamics and crystallisation kinetics in EFC.
    [Show full text]