LDDMM-Face: Large Deformation Diffeomorphic Metric Learning for Flexible and Consistent Face Alignment

Total Page:16

File Type:pdf, Size:1020Kb

LDDMM-Face: Large Deformation Diffeomorphic Metric Learning for Flexible and Consistent Face Alignment LDDMM-Face: Large Deformation Diffeomorphic Metric Learning for Flexible and Consistent Face Alignment Huilin Yang *1,2, Junyan Lyu *1,3, Pujin Cheng1, and Xiaoying Tang1 1Southern University of Science and Technology [email protected] 2The University of British Columbia 3The University of Queensland Abstract We innovatively propose a flexible and consistent face alignment framework, LDDMM-Face, the key contribution of which is a deformation layer that naturally embeds fa- cial geometry in a diffeomorphic way. Instead of predicting facial landmarks via heatmap or coordinate regression, we formulate this task in a diffeomorphic registration manner and predict momenta that uniquely parameterize the defor- mation between initial boundary and true boundary, and then perform large deformation diffeomorphic metric map- ping (LDDMM) simultaneously for curve and landmark to localize the facial landmarks. Due to the embedding of LD- DMM into a deep network, LDDMM-Face can consistently annotate facial landmarks without ambiguity and flexibly Figure 1: Representative LDDMM-Face results. Top: train- handle various annotation schemes, and can even predict ing with partial annotations on the WFLW, HELEN and dense annotations from sparse ones. Our method can 300W datasets (from left to right); bottom: predictions of be easily integrated into various face alignment networks. full annotations from LDDMM-Face. We extensively evaluate LDDMM-Face on four benchmark datasets: 300W, WFLW, HELEN and COFW-68. LDDMM- Face is comparable or superior to state-of-the-art meth- 1. Introduction arXiv:2108.00690v1 [cs.CV] 2 Aug 2021 ods for traditional within-dataset and same-annotation set- tings, but truly distinguishes itself with outstanding per- Face alignment refers to identifying the geometric struc- formance when dealing with weakly-supervised learning ture of a human face in a digital image, through localizing (partial-to-full), challenging cases (e.g., occluded faces), key landmarks that are usually predefined and characteriz- and different training and prediction datasets. In addition, able of the face’s geometry. Face alignment is a prerequi- LDDMM-Face shows promising results on the most chal- site in many computer vision tasks, such as face recognition lenging task of predicting across datasets with different an- [53], facial expression recognition [36, 52], face verification notation schemes. [39], face reconstruction [33] and face reenactment [29]. For different datasets, there exist different face alignment annotation schemes. For example, COFW [4] annotates 29 landmarks, 300W [34] annotates 68 landmarks, WFLW [46] annotates 98 landmarks, and HELEN [23] annotates 194 landmarks. Most existing face alignment methods can *Equal contribution only deal with the specific annotation scheme adopted by the training dataset of interest, but cannot flexibly accom- most face alignment networks to effectively predict fa- modate multiple annotation schemes. Namely, if a model cial landmarks with different annotation schemes. is trained on a dataset with a specific annotation scheme, it can then only predict landmarks of the specific scheme; • Our approach for the first time identifies the feasibil- a model trained on 300W with a 68-landmark annotation ity of predicting consistent facial boundaries and full scheme can only predict the learned 68 landmarks but not facial landmarks supervised with only partial annota- other annotation schemes such as a 194-landmark scheme. tions of training data, in a novel manner of weakly- In addition, to date, there is no such work that can fully uti- supervised learning. lize partially-annotated data. In other words, it is infeasible • We comprehensively evaluate the performance of our to make full predictions based on only partially-annotated proposed LDDMM-Face on multiple widely-used face data; for example, predicting 194 landmarks when train- alignment benchmark datasets [23, 46, 34], in terms of ing with only 97 or even less landmarks. Even in tradi- not only landmark prediction accuracy but also overall tional fully-supervised settings, most existing works cannot facial geometry matching degree. very well handle challenging cases such as faces with oc- clusion. This is because those existing works usually han- • We demonstrate the effectiveness of LDDMM-Face dle each landmark individually or predict landmarks with in being superior in handling challenging cases even non-diffeomorphic deformations. In this way, the predicted across datasets, being excellent in making partial-to- landmarks could be inconsistent, resulting in incorrect fa- full predictions, being adaptable to various deep net- cial geometry topology. work settings, being capable of predicting consistent In such context, we formulate face alignment into a facial boundaries with different training annotations, diffeomorphic registration framework. Specifically, we and being flexible in handling multiple annotation use boundary curves to represent facial geometry [11]. schemes either within or across datasets. Then, large deformation diffeomorphic metric mapping (LDDMM) simultaneously for curve and landmark [16, 18] 2. Related Works between an initial face and the true face is encoded into a neural network for landmark localization. LDDMM de- Face alignment has been widely researched with fruitful livers a non-linear smooth transformation with a favorable outcomes. From early Active Appearance Models [7, 25, topology-preserving one-to-one mapping property. Once 19, 35], Active Shape Models [26] to recently-developed the diffeomorphism, which is parameterized by momenta Cascaded Shape Regression [49, 38, 20, 32, 24, 58, 5, 43] [11, 16, 18], between the initial face and the true face is ob- and deep learning methods [56, 55, 41, 48, 12, 3, 51, 21, 28], tained, all points on/around the initial face have unique cor- accuracy has been improved significantly. Equipped with respondence on/around the true face through the acquired powerful image feature extraction capability of Convolu- diffeomorphism. This property makes it possible to pre- tional Neural Network (CNN), deep learning methods hold dict facial landmarks of different annotation schemes with state-of-the-art (SOTA) results. The proposed method of a model trained only on landmarks from a single annotation this work, LDDMM-Face, fits in the deep learning scope. scheme. Utilizing both landmark and curve enables LD- Coordinate regression models Coordinate regression DMM to handle shape deformations both locally and glob- models use neural networks to directly predict coordinates ally; the role of the landmark term is to match the corre- of facial landmarks. Zhang et al. [55] incorporates a vari- sponding landmarks whereas the role of the curve term is to ety of facial attributes like gender, expression and appear- make the corresponding facial curves be close to each other ance in a multi-task learning framework. Kowalski et al. and to preserve facial topology such that consistent land- [21] presents the Deep Alignment Network (DAN) that em- mark predictions can be made. Noteworthily, we predict ploys landmark heatmap and transformation of face and momenta instead of increments between the initial face and landmarks to a canonical plane in CNN. Qian et al. [31] the true face, which gives it the additional flexibility and is leverages disentangled style and shape space of each indi- the key novelty of the proposed method. This is the first vidual to augment existing structures via style translation, time that face alignment is formulated as a diffeomorphic which can be regarded as a data augmentation approach. registration problem, providing novel insights into the face Heatmap regression models Heatmap regression mod- alignment realm. els use neural networks to regress a set of heatmaps, one for In this work, our contributions include: each individual landmark, and then indirectly estimate land- marks from the heatmaps. Wu et al. [46] uses facial bound- • We propose a novel face alignment network by inte- ary heatmap to supervise landmark prediction, utilizing a grating LDDMM into deep neural networks to handle hourglass module [28] and a message passing scheme [6]. various facial annotation schemes. Our proposed ap- Zou et al. [60] employs hierarchically structured landmark proach, LDDMM-Face, can be easily integrated into ensembles to depict holistic and local structures of facial landmarks for robust facial landmark detection. Wang et features are passed through a deep LDDMM head which al. [45] proposes an adaptive wing loss for heatmap regres- consists of a momenta estimator and a deformation layer. sion, with an ability to adapt its shape to various types of The momenta estimator contains fully-connected layers and ground truth heatmap pixels. Kumar et al. [22] uses a mean predicts vertical and horizontal momenta for each land- estimator for heatmap and jointly predicts landmark loca- mark. Suppose the geometry of a face is characterized by tions, associating uncertainties of the predicted locations N boundary curves, the deformation layer has N sublayers and landmark visibilities. Browatzki et al. [2] leverages im- (flow 1 to flow N). Each sublayer separately deforms the plicit knowledge by training an autoencoder on unannotated corresponding initial curve, the procedure of which is de- facial datasets to perform few-shot face alignment. tailed in subsection 3.1. Two inputs, the mean face serving Weakly supervised learning for face alignment as the initial face and the estimated momenta, are fed into Weakly
Recommended publications
  • Modular Approach on Shape Spaces, Sub-Riemannian Geometry and Computational Anatomy Barbara Gris
    Modular approach on shape spaces, Sub-Riemannian geometry and computational anatomy Barbara Gris To cite this version: Barbara Gris. Modular approach on shape spaces, Sub-Riemannian geometry and computational anatomy. General Mathematics [math.GM]. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLN069. tel-01567466v2 HAL Id: tel-01567466 https://tel.archives-ouvertes.fr/tel-01567466v2 Submitted on 6 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 NNT : 2016SACLN069 Thèse de doctorat de l’Université Paris-Saclay préparée École Normale Supérieure de Paris-Saclay Ecole doctorale n◦574 École Doctorale de Mathématiques Hadamard (EDMH, ED 574) Spécialité de doctorat : Mathématiques appliquées par Mme. Barbara Gris Approche modulaire sur les espaces de formes, géométrie sous-riemannienne et anatomie computationnelle Thèse présentée et soutenue à École Normale Supérieure de Paris-Saclay, le 05 décembre 2016. Composition du Jury : M. Laurent YOUNES Professeur (Président du jury) Johns Hopkins University M. Tom FLETCHER Professeur (Rapporteur) University of Utah M. Simon MASNOU Professeur (Rapporteur) Université Lyon 1 Mme Julie DELON Professeure (Examinatrice) Université Paris Descartes M. Emmanuel TRÉLAT Professeur (Examinateur) Université Pierre et Marie Curie M. Stanley DURRLEMAN Chargé de recherche (Directeur de thèse) INRIA M.
    [Show full text]
  • Entorhinal and Transentorhinal Atrophy in Mild Cognitive Impairment Using Longitudinal Diffeomorphometry
    Alzheimer’s& Dementia: Diagnosis, Assessment & Disease Monitoring 9 (2017) 41-50 Neuroimaging Entorhinal and transentorhinal atrophy in mild cognitive impairment using longitudinal diffeomorphometry Daniel J. Twarda,b,*, Chelsea S. Sicata, Timothy Browna, Arnold Bakkerc, Michela Gallagherd, Marilyn Alberte, Michael Millera,b,f, for the Alzheimer’s Disease Neuroimaging Initiative aCenter for Imaging Science, Johns Hopkins University, Baltimore, MD, USA bDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA cDepartment of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA dDepartment of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD, USA eDepartment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA fKavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA Abstract Introduction: Autopsy findings have shown the entorhinal cortex and transentorhinal cortex are among the earliest sites of accumulation of pathology in patients developing Alzheimer’s disease. Methods: Here, we study this region in subjects with mild cognitive impairment (n 5 36) and in control subjects (n 5 16). The cortical areas are manually segmented, and local volume and shape changes are quantified using diffeomorphometry, including a novel mapping procedure that reduces variability in anatomic definitions over time. Results: We find significant thickness and volume changes localized to the transentorhinal cortex through high field strength atlasing. Discussion: This demonstrates that in vivo neuroimaging biomarkers can detect these early changes among subjects with mild cognitive impairment. Ó 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
    [Show full text]
  • Multimodal Cross-Registration and Quantification of Metric Distortions
    Multimodal Cross-registration and Quantification of Metric Distortions in Whole Brain Histology of Marmoset using Diffeomorphic Mappings Brian C. Lee ∗1,2, Meng K. Lin3, Yan Fu4, Junichi Hata3, Michael I. Miller1,2, and Partha P. Mitra5 1Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA 2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 3RIKEN Center for Brain Science, Wako, Japan 4Shanghai Jiaotong University, Shanghai, China 5Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA arXiv:1805.04975v2 [q-bio.NC] 17 Apr 2019 ∗Corresponding author: [email protected] (BCL) Abstract Whole brain neuroanatomy using tera-voxel light-microscopic data sets is of much current interest. A fundamental problem in this field, is the mapping of individual brain data sets to a reference space. Previous work has not rigorously quantified the distortions in brain geometry from in-vivo to ex-vivo brains due to the tissue processing. Further, existing approaches focus on registering uni-modal volumetric data; however, given the increasing interest in the marmoset, a primate model for neuroscience research, it is necessary to cross-register multi-modal data sets including MRIs and multiple histological series that can help address individual variations in brain architecture. These challenges require new algorithmic tools. Here we present a computational approach for same-subject multimodal MRI guided reconstruction of a series of consecutive histological sections, jointly with diffeomorphic mapping to a reference atlas. We quantify the scale change during the different stages of histological processing of the brains using the determinant of the Jacobian of the diffeomorphic transformations involved. There are two major steps in the histology process with associated scale distortions (a) brain perfusion (b) histological sectioning and reassem- bly.
    [Show full text]
  • Amygdalar Atrophy in Symptomatic Alzheimer's Disease Based on Diffeomorphometry
    Neurobiology of Aging 36 (2015) S3eS10 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging High-dimensional morphometry Amygdalar atrophy in symptomatic Alzheimer’s disease based on diffeomorphometry: the BIOCARD cohortq Michael I. Miller a,b,c,*, Laurent Younes a,b,d, J. Tilak Ratnanather a,b,c, Timothy Brown a, Huong Trinh a, David S. Lee a,c, Daniel Tward a,c, Pamela B. Mahon e, Susumu Mori f, Marilyn Albert g, the BIOCARD Research Team a Center for Imaging Science, Johns Hopkins University b Institute for Computational Medicine, Johns Hopkins University c Department of Biomedical Engineering, Johns Hopkins University d Department of Applied Mathematics and Statistics, Johns Hopkins University e Department of Psychiatry, Johns Hopkins University School of Medicine f Department of Radiology, Johns Hopkins University School of Medicine g Department of Neurology, Johns Hopkins University School of Medicine article info abstract Article history: This article examines the diffeomorphometry of magnetic resonance imaging-derived structural markers Received 2 May 2013 for the amygdala, in subjects with symptomatic Alzheimer’s disease (AD). Using linear mixed-effects Received in revised form 29 May 2014 models we show differences between those with symptomatic AD and controls. Based on template Accepted 8 June 2014 centered population analysis, the distribution of statistically significant change is seen in both the vol- Available online 29 August 2014 ume and shape of the amygdala in subjects with symptomatic AD compared with controls. We find that high-dimensional vertex based markers are statistically more significantly discriminating (p < 0.00001) Keywords: than lower-dimensional markers and volumes, consistent with comparable findings in presymptomatic Amygdala fi fi MCI AD.
    [Show full text]
  • The Fshape Framework for the Variability Analysis of Functional Shapes Benjamin Charlier, Nicolas Charon, Alain Trouvé
    The Fshape Framework for the Variability Analysis of Functional Shapes Benjamin Charlier, Nicolas Charon, Alain Trouvé To cite this version: Benjamin Charlier, Nicolas Charon, Alain Trouvé. The Fshape Framework for the Variability Analysis of Functional Shapes. Foundations of Computational Mathematics, Springer Verlag, 2017, 17 (2), pp.287-357. 10.1007/s10208-015-9288-2. hal-00981805v1 HAL Id: hal-00981805 https://hal.archives-ouvertes.fr/hal-00981805v1 Submitted on 23 Apr 2014 (v1), last revised 27 Jul 2016 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The fshape framework for the variability analysis of functional shapes B. Charlier1,2, N. Charon1,3, and A. Trouvé1 1CMLA, UMR 8536, École normale supérieure de Cachan, France 2I3M, UMR 5149, Université Montpellier II, France 3DIKU, University of Copenhagen, Denmark April 24, 2014 Abstract This article introduces a full mathematical and numerical framework for treating func- tional shapes (or fshapes) following the landmarks of shape spaces and shape analysis. Func- tional shapes can be described as signal functions supported on varying geometrical supports. Analysing variability of fshapes’ ensembles require the modelling and quantification of joint variations in geometry and signal, which have been treated separately in previous approaches.
    [Show full text]
  • Shapes and Diffeomorphisms, Applied Mathematical Sciences 171, 424 Appendix A: Elements from Functional Analysis
    Appendix A Elements from Functional Analysis This first chapter of the appendix includes results in functional analysis that are needed in the main part of the book, focusing mostly on Hilbert spaces, and providing proofs when these are simple enough. Many important results of the theory are left aside, and the reader is referred to the many treatises on the subject, including [45, 74, 246, 306] and other references listed in this chapter, for a comprehensive account. A.1 Definitions and Notation Definition A.1 AsetH is a (real) Hilbert space if: (i) H is a vector space on R. ( , ) → , , ∈ (ii) H has an inner product denoted h h h h H ,forh h H. This inner product is a symmetric positive definite bilinear form. The associated norm is = , denoted h H h h H . (iii) H is a complete space with respect to the topology associated to the norm. · If condition (ii) is weakened to the fact that H is a norm (not necessarily induced by an inner product), one says that H is a Banach space. Convergent sequences in the norm topology are sequences hn for which there ∈ − → exists an h H such that h hn H 0. Property (iii) means that if a sequence (hn, n ≥ 0) in H is a Cauchy sequence, i.e., it collapses in the sense that, for every > − ≤ ≥ positive ε there exists an n0 0 such that hn hn0 H ε for n n0, then it ∈ − → necessarily has a limit: there exists an h H such that hn h H 0asn tends to infinity.
    [Show full text]
  • Current Issues in Statistical Analysis on Manifolds for Computational
    Xavier Pennec Univ. Côte d’Azur and Inria, France Geometric Statistics for computational anatomy Freely adapted from “Women teaching geometry”, in Adelard of Bath translation of Euclid’s elements, 1310. ASA / FSU W. Stat. Imaging 05/10/2020 ERC AdG 2018-2023 G-Statistics Science that studies the structure and the relationship in From anatomy… space of different organs and tissues in living systems [Hachette Dictionary] 2007 Visible Human Project, NLM, 1996-2000 Voxel-Man, U. Hambourg, 2001 1er cerebral atlas, Vesale, 1543 Talairach & Tournoux, 1988 Paré, 1585 Vésale (1514-1564) Sylvius (1614-1672) Gall (1758-1828) : Phrenology Galien (131-201) Paré (1509-1590) Willis (1621-1675) Talairach (1911-2007) Revolution of observation means (1980-1990): From dissection to in-vivo in-situ imaging From the description of one representative individual to generative statistical models of the population X. Pennec - ASA / FSU W. Stat. Imaging 05/10/2020 2 From anatomy… to Computational Anatomy Methods to compute statistics of organ shapes across subjects in species, populations, diseases… Mean shape (atlas), subspace of normal vs pathologic shapes Shape variability (Covariance) Model development across time (growth, ageing, ages…) Use for personalized medicine (diagnostic, follow-up, etc) Classical use: atlas-based segmentation X. Pennec - ASA / FSU W. Stat. Imaging 05/10/2020 3 Methods of computational anatomy Remodeling of the right ventricle of the heart in tetralogy of Fallot Mean shape Shape variability Correlation with clinical variables Predicting remodeling effect Shape of RV in 18 patients X. Pennec - ASA / FSU W. Stat. Imaging 05/10/2020 4 Diffeomorphometry: Morphometry through Deformations Atlas φ1 φ5 Patient 1 Patient 5 φ φ 4 φ2 3 Patient 4 Patient 3 Patient 2 Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller] Observation = “random” deformation of a reference template Reference template = Mean (atlas) Shape variability encoded by the deformations Statistics on groups of transformations (Lie groups, diffeomorphism)? X.
    [Show full text]
  • Cortical Thickness Atrophy in the Transentorhinal Cortex in Mild Cognitive Impairment T ⁎ Sue Kulasona,B,C, , Daniel J
    NeuroImage: Clinical 21 (2019) 101617 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment T ⁎ Sue Kulasona,b,c, , Daniel J. Twarda,b,c,d, Timothy Browna,b, Chelsea S. Sicata,b, Chin-Fu Liua,b,c, J. Tilak Ratnanathera,b,c, Laurent Younesa,b,e, Arnold Bakkerf, Michela Gallagherg, Marilyn Alberth, Michael I. Millera,b,c,d, for the Alzheimer's Disease Neuroimaging Initiative1 a Center for Imaging Science, The Johns Hopkins University, Baltimore, MD 21218, USA b Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 21218, USA c Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA d Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA e Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA f Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21205, USA g Department of Psychological and Brain Sciences, Johns Hopkins School of Arts and Sciences, Baltimore, MD 21218, USA h Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA ARTICLE INFO ABSTRACT Keywords: This study examines the atrophy rates of subjects with mild cognitive impairment (MCI) compared to controls in Entorhinal cortex four regions within the medial temporal lobe: the transentorhinal cortex (TEC), entorhinal cortex (ERC), hip- Transentorhinal cortex pocampus, and amygdala. These regions were manually segmented and then corrected for undesirable long- Mild cognitive impairment itudinal variability via Large Deformation Diffeomorphic Metric Mapping (LDDMM) based longitudinal diffeo- Braak staging morphometry.
    [Show full text]
  • Statistical Analysis of Functions on Surfaces, with an Application to Medical Imaging
    Statistical Analysis of Functions on Surfaces, with an application to Medical Imaging Eardi Lila∗1 and John A. D. Aston†2 1Cambridge Centre for Analysis, University of Cambridge 2Statistical Laboratory, DPMMS, University of Cambridge August 2, 2019 Abstract In Functional Data Analysis, data are commonly assumed to be smooth functions on a fixed interval of the real line. In this work, we introduce a comprehensive framework for the analysis of functional data, whose domain is a two-dimensional manifold and the domain itself is subject to variability from sample to sample. We formulate a statistical model for such data, here called Functions on Surfaces, which enables a joint representation of the geometric and functional aspects, and propose an associated estimation framework. We assess the validity of the framework by performing a simulation study and we finally apply it to the analysis of neuroimaging data of cortical thickness, acquired from the brains of different subjects, and thus lying on domains with different geometries. 1 Introduction Advances in medical imaging acquisition are constantly increasing the complexity of data representing anatomical objects. In particular, some of these imaging modalities offer a richer representation of anatomical manifolds, as a geometric object coupled with a function defined on the geometric object itself, i.e. a Function on a Surface (FoS). In this work we focus on Functions on Surfaces (FoSs) that are real functions located on domains that are two-dimensional manifolds, where the domains themselves are subject arXiv:1707.00453v3 [stat.ME] 1 Aug 2019 to variability from sample to sample, as shown in Figure1.
    [Show full text]
  • On the Complexity of Human Neuroanatomy at the Millimeter Morphome Scale: Developing Codes and Characterizing Entropy Indexed To
    ORIGINAL RESEARCH published: 18 October 2017 doi: 10.3389/fnins.2017.00577 On the Complexity of Human Neuroanatomy at the Millimeter Morphome Scale: Developing Codes Edited by: and Characterizing Entropy Indexed Pedro Antonio Valdes-Sosa, Joint China-Cuba Laboratory for to Spatial Scale Frontier Research in Translational Neurotechnology, China Daniel J. Tward* and Michael I. Miller for the Alzheimer’s Disease Neuroimaging Initiative † Reviewed by: Fabio Grizzi, Center for Imaging Science, Department of Biomedical Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins Humanitas Clinical and Research University, Baltimore, MD, United States Center, Italy M. Mallar Chakravarty, McGill University, Canada In this work we devise a strategy for discrete coding of anatomical form as described *Correspondence: by a Bayesian prior model, quantifying the entropy of this representation as a function of Daniel J. Tward code rate (number of bits), and its relationship geometric accuracy at clinically relevant [email protected] scales. We study the shape of subcortical gray matter structures in the human brain †Data used in preparation of this article were obtained from the through diffeomorphic transformations that relate them to a template, using data from the Alzheimer’s Disease Neuroimaging Alzheimer’s Disease Neuroimaging Initiative to train a multivariate Gaussian prior model. Initiative (ADNI) database We find that the at 1 mm accuracy all subcortical structures can be described with less (adni.loni.usc.edu). The key portion is “the investigators within the ADNI than 35 bits, and at 1.5 mm error all structures can be described with less than 12 bits. contributed to the design and This work represents a first step towards quantifying the amount of information ordering implementation of ADNI and/or provided data but did not participate a neuroimaging study can provide about disease status.
    [Show full text]
  • LDDMM Surface Registration with Atrophy Constraints
    DIFFEOMORPHIC SURFACE REGISTRATION WITH ATROPHY CONSTRAINTS Abstract. Diffeomorphic registration using optimal control on the diffeomorphism group and on shape spaces has become widely used since the development of the Large Defor- mation Diffeomorphic Metric Mapping (LDDMM) algorithm. More recently, a series of algorithms involving sub-riemannian constraints have been introduced, in which the veloc- ity fields that control the shapes in the LDDMM framework are constrained in accordance with a specific deformation model. Here, we extend this setting by considering, for the first time, inequality constraints, in order to estimate surface deformations that only allow for atrophy, introducing for this purpose an algorithm that uses the augmented lagrangian method. We prove the existence of solutions of the associated optimal control problem, and the consistency of our approximation scheme. These developments are illustrated by numerical experiments on brain data. 1. Introduction Over the last couple of decades, multiple studies have provided evidence of anatomical differences between control groups and cognitively impaired groups at the population level, for a collection of diseases, including schizophrenia, depression, Huntington's or dementia [36, 18, 11, 37, 54, 42, 1, 29, 41, 52, 33]. In the particular case of neuro-degenerative diseases, a repeated objective has been to design anatomical biomarkers, measurable from imaging data, that would allow for individualized detection and prediction. This goal has become even more relevant with the recent emergence of longitudinal studies, involving patients at early stages or \converters" which showed that, when the effect is measured at the population level, anatomical changes caused by diseases like Alzheimer's or Huntington's were happening several years before cognitive impairment could be detected on individual subjects.
    [Show full text]
  • Arxiv:1503.00765V1 [Math.OC] 2 Mar 2015
    LDDMM SURFACE REGISTRATION WITH ATROPHY CONSTRAINTS Abstract. Diffeomorphic registration using optimal control on the diffeomorphism group and on shape spaces has become widely used since the development of the Large Defor- mation Diffeomorphic Metric Mapping (LDDMM) algorithm. More recently, a series of algorithms involving sub-riemannian constraints have been introduced, in which the velocity fields that control the shapes in the LDDMM framework are constrained in ac- cordance with a specific deformation model. Here, we extend this setting by considering, for the first time, inequality constraints, in order to estimate surface deformations that only allow for atrophy, introducing for this purpose an algorithm that uses the augmented lagrangian method. We also provide a version of our approach that uses a weaker con- straint in which only the total volume is forced to decrease. These developments are illustrated by numerical experiments on brain data. 1. Introduction Over the last couple of decades, multiple studies have provided evidence of anatomical differences between control groups and cognitively impaired groups at the population level, for a collection of diseases, including schizophrenia, depression, Huntington's or dementia [16, 8, 4, 17, 26, 19, 1, 13, 18, 24, 14]. In the particular case of neuro-degenerative diseases, a repeated objective has been to design anatomical biomarkers, measurable from imaging data, that would allow for individualized detection and prediction of the disease. This goal has become even more relevant with the recent emergence of longitudinal studies, involving patients at early stages or \converters" which showed that, when the effect is measured at the population level, anatomical changes caused by diseases like Alzheimer's or Huntington's were happening several years before cognitive impairment can be detected on individual subjects.
    [Show full text]