Coarse-to-Fine Hamiltonian Dynamics of Hierarchical Flows in Computational Anatomy Michael I. Miller Daniel J. Tward Johns Hopkins University Johns Hopkins University Baltimore, Maryland, USA 3400 N. Charles St., Baltimore, MD 21218
[email protected] [email protected] Alain Trouve´ Ecole Normale Superieure 45 Rue d’Ulm, 75005 Paris, France
[email protected] Abstract few millimeters to centimeters). In contrast, our current ex- perimental work in Alzheimer’s disease is mapping the mi- We present here the Hamiltonian control equations for cro scales of molecular Tau-pathology measured via histol- hierarchical diffeomorphic flows of particles. We define the ogy, to the sub-millimeter scales of anatomy obtained via controls to be a series of multi-scale vector fields, each with moderate and high field MRI [13]. Towards this end we their own reproducing kernel Hilbert space norm. The hier- derive a set of Hamiltonian control equations that allow us archical control is connected across scale through succes- to directly model information across scales resulting from sive refinements that refine as they ascend the hierarchy with molecular and anatomical imaging. commensurately higher bandwidth Green’s kernels. Inter- There have been many successful approaches in the 80’s estingly the geodesic equations do not separate, with fine and 90’s for representing multi-scale data, as well as many scale motions determined by all of the particle information methods for the construction of scale-space. Our represen- simultaneously, from coarse to fine. Additionally, the hier- tation is abstract enough that it accommodates linear and archical conservation law is derived, defining the geodesics non-linear transformations including wavelets [3, 6] and and demonstrating the constancy of the Hamiltonian.