Chapter 14 Lecture Outline

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 14 Lecture Outline Chapter 14 Lecture Outline See separate PowerPoint slides for all figures and tables pre-inserted into PowerPoint without notes. ©McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. 14.1: Introduction to the Lymphatic System & Immunity Lymphatic System: • Group of cells and chemicals that travel in lymphatic vessels, and organs & glands that synthesize them • The lymphatic system contains a network of vessels that assists in the circulation of body fluids • Lymphatic vessels collect and carry away excess fluid from interstitial spaces, eventually returning it to the blood • Special vessels called lacteals transport absorbed fats to the circulation • The organs, cells, and biochemicals of the lymphatic system help defend body against disease ©McGraw-Hill Education. 14.2: Lymphatic Pathways • Lymphatic pathways start as lymphatic capillaries, that merge to form larger vessels, that empty into veins in the thoracic cavity • Lymphatic Capillaries: • Lymphatic capillaries are tiny, closed-ended tubes that extend into interstitial spaces, paralleling the blood capillaries • Found all over body, except in central nervous system • They receive tissue (interstitial) fluid through their thin walls and slits between cells • Once inside a lymphatic capillary, tissue fluid is called lymph ©McGraw-Hill Education. Lymphocyte Lymphocyte Nucleus of lymphocyte Erythrocytes Lymphatic Capillaries ©McGraw-Hill Education. Lymphatic Vessels • The walls of lymphatic vessels are thinner than those of veins, but are constructed with the same 3 layers • They also have flaplike valves on the inside, like veins • Larger lymphatic vessels pass through organs called lymph nodes, and then merge to form larger lymphatic trunks ©McGraw-Hill Education. Lymphatic Capillaries Transport Excess Fluid Back to the Blood ©McGraw-Hill Education. Valve in a Lymphatic Vessel Insert Figure 14.3 here ©McGraw-Hill Education. Lymphatic Trunks and Collecting Ducts • The lymphatic trunks drain lymph from the lymphatic vessels • The trunks are named for the regions they drain • These trunks empty into 1 of 2 collecting ducts, either the thoracic duct or right lymphatic duct • The right lymphatic duct drains the right side of the head and neck, the right arm, and right thorax, and empties into the right subclavian vein • The thoracic duct, the larger of the collecting ducts, drains the rest (majority) of the body, and empties into the left subclavian vein ©McGraw-Hill Education. Cysterna Chyli Thoracic Duct Lymphatic Pathways ©McGraw-Hill Education. Lymphatic Drainage of Mammary and Axillary Regions Axillary lymph nodes Pectoralis major muscle 21-13 14.3: Tissue Fluid and Lymph • Lymph is tissue fluid that has entered a lymphatic capillary; lymph formation depends on tissue fluid formation • Tissue Fluid Formation: • Tissue fluid is made up of water and dissolved substances that leave blood capillaries by filtration and diffusion • Tissue fluid is almost the same as blood plasma, except that it does not contain large plasma proteins; they are too large to pass through capillary walls • Plasma proteins create plasma colloid osmotic pressure, that draws most of the fluid back into the capillaries • Fluid that does not return to the capillaries becomes tissue fluid ©McGraw-Hill Education. Lymph Formation and Function • Filtration from the plasma usually occurs to a greater extent than reabsorption; this leads to tissue fluid formation • Rising osmotic pressure in the tissues interferes with the return of fluids to the bloodstream • Increasing tissue fluid hydrostatic pressure forces some of the fluid into lymphatic capillaries, where it is now called lymph • Most substances, including small proteins, are returned to blood via the lymph • Lymph also transports foreign particles, including bacteria and viruses, to the lymph nodes for recognition and destruction ©McGraw-Hill Education. 14.4: Lymph Movement • The hydrostatic pressure of tissue fluid drives the entry of fluid into lymphatic capillaries, where it is now called lymph • Forces that move blood in veins, such as skeletal muscle contraction, breathing movements, contraction of smooth muscle in the walls of the vessels (lymphatic trunks, in this case), and the presence of valves, are also the forces that propel lymph through lymphatic vessels • A condition that interferes with the flow in lymph will result in an accumulation of lymph in the interstitial spaces, called edema • During surgery, lymphatic vessels or tissues may be removed or disturbed, resulting in edema ©McGraw-Hill Education. Lymphatic Drainage of the Breast ©McGraw-Hill Education. 14.5: Lymphatic Tissues and Organs • Lymphatic tissue contains lymphocytes, macrophages, and other cells • Diffuse, unencapsulated lymphatic tissue associated with the digestive, respiratory, urinary, and reproductive systems is called mucosa-associated lymphoid tissue (MALT) • Tonsils, appendix, and Peyer’s patches are compact masses of lymphatic nodules • Encapsulated lymphatic organs include lymph nodes, the thymus, and spleen ©McGraw-Hill Education. Lymph Nodes • Lymph nodes, which contain lymphocytes and macrophages, are located in groups or chains along lymphatic vessels • Structure of a Lymph node: • Lymph nodes are bean-shaped • Blood vessels, nerves, and efferent lymphatic vessels enter or exit at the indented hilum • Afferent lymphatic vessels enter on the convex surface • Lymph nodes are covered with a connective tissue capsule, that extends inside the node and divides it into nodules and spaces called sinuses • Lymph nodes contain both lymphocytes and macrophages; they filter the lymph as it flows through them, removing many pathogens ©McGraw-Hill Education. Lymph Node Histology Cortex Medulla Lymphadenopathy Lymphadenitis Germinal centers Lymph Node: LM Low MagnificationSecondary Lymph node Cortex Germinal center Primary nodules nodules Capsule Subcapsular sinus Medulla Medullary cords Medullary sinus Lymph Node: LM Medium Magnification Subcapsular Primary Capsule sinus Cortex Medulla nodules Trabecula Cortical Secondary Medullary Medullary Germinal sinus nodule cords sinus centers Lymph Node (Lymphoid Nodule) LM: Medium Magnification Capsule Subcapsular sinus Reticular fibers Germinal center of Mantle zone of lymphatic nodule lymphatic nodule Lymph Node (Lymphoid Nodule) LM: High Magnification Lymphoid nodule in lymph B lymphocytes in lymphoid node nodule Germinal center of lymphoid Mantle zone of lymphoid nodule nodule Lymph Node (Medullary Sinus) SEM: Medium Magnification Reticular fibers of lymph Lymphocytes node Tonsils Palatine Pharyngeal Lingual 21-26 Palatine Tonsil Histology Epithelium Germinal centers Tonsil Lymphatic nodules Tonsillar crypts Peyer Patches 21-28 A Section Through a Lymph Node ©McGraw-Hill Education. A Lymph Node with Lymphatic Vessels ©McGraw-Hill Education. Locations of Lymph Nodes • The lymph nodes generally occur in chains along the parts of the larger lymphatic vessels • Lymph nodes are not found in the central nervous system • Major areas of concentrations of lymph nodes: cervical, thoracic, axillary, supratrochlear, abdominal, pelvic, and inguinal regions ©McGraw-Hill Education. Mediastinal nodes Lymph Nodes Axillary nodes Inguinal nodes Iliac nodes Pelvis Lymphangiogram: A – P View Iliac lymph nodes Pelvic inlet Inguinal lymph nodes Pubic symphysis Locations of Major Lymph Nodes ©McGraw-Hill Education. Functions of Lymph Nodes Main functions of lymph nodes: • Filter lymph and remove bacteria and cellular debris before lymph is returned to the blood • Immune surveillance: Monitor body fluids; performed by lymphocytes and macrophages • Lymph nodes are also centers of lymphocyte production • Lymphocytes attack viruses, bacteria and parasitic cells that enter a lymph node • Macrophages engulf and destroy foreign particles, debris, and damaged cells ©McGraw-Hill Education. Thymus • The thymus is a soft, bi-lobed organ located behind the sternum, above the heart • It shrinks in size during the lifetime; large in children, small in adults, replaced by adipose & connective tissue in the elderly • The thymus is surrounded by a connective tissue capsule that extends inside it and divides it into lobules • Lobules contain lymphocytes, some of which mature into T cells or T lymphocytes, that leave the thymus to provide immunity • The thymus secretes hormones called thymosins, which influence the maturation of T lymphocytes ©McGraw-Hill Education. The Location of the Thymus ©McGraw-Hill Education. Thymus Thymus Gland Thymus (adult) Thymus (infant) Fetal Thymus Lobule of thymus LM: Low Magnification Cortex of thymus Lobe of thymus Medulla of thymus Septa of thymus Thymus (Hassell’s Corpuscles) LM: High Magnification Hassall’s corpuscle Blood vessels in medulla of thymus A Section Through the Thymus ©McGraw-Hill Education. Spleen • The spleen lies in the upper left abdominal cavity • Spleen is the body’s largest lymphatic organ • The spleen resembles a large lymph node except that it contains blood instead of lymph • Composed of white pulp, which contains many lymphocytes, and red pulp, which contains red blood cells, macrophages, and lymphocytes • The spleen filters the blood and removes damaged blood cells and bacteria ©McGraw-Hill Education. Spleen 21-44 Histology of the Spleen Red pulp White pulp Capsule Spleen LM: Medium Magnification Central white pulp arteries Red pulp Germinal center
Recommended publications
  • Tonsillar Crypts and Bacterial Invasion of Tonsils, a Pilot Study R Mal, a Oluwasanmi, J Mitchard
    The Internet Journal of Otorhinolaryngology ISPUB.COM Volume 9 Number 2 Tonsillar crypts and bacterial invasion of tonsils, a pilot study R Mal, A Oluwasanmi, J Mitchard Citation R Mal, A Oluwasanmi, J Mitchard. Tonsillar crypts and bacterial invasion of tonsils, a pilot study. The Internet Journal of Otorhinolaryngology. 2008 Volume 9 Number 2. Abstract Conclusion: We found no clear correlation between tonsillitis and a defect in the tonsillar crypt epithelium. Tonsillitis might be due to immunological differences of subjects rather than a lack of integrity of the crypt epithelium.Further study with larger sample size and normal control is suggested.Objective: To investigate histologically if a lack of protection of the deep lymphoid tissue in tonsillar crypts by an intact epithelial covering is an aetiological factor for tonsillitis.Method: A prospective histological study of the tonsillar crypt epithelium by immunostaining for cytokeratin in 34 consecutive patients undergoing tonsillectomy either for tonsillitis or tonsillar hypertrophy without infection (17 patients in each group).Results: Discontinuity in the epithelium was found in 70.6% of the groups of patients with tonsillitis and in 35.3% of the groups of patients with tonsillar hypertrophy. This is of borderline significance. INTRODUCTION infection apparently occurrs through the micropore of the The association of lymphoid tissue with protective crypt epithelium. A.Jacobi in his presidential address in epithelium is widespread, eg skin, upper aerodigestive tract, 1906: “The tonsil as a portal of microbic and toxic invasion” gut, bronchi, urinary tract. The function of the palatine stated: “ A surface lesion must always be supposed to exist tonsils, an example of an organised mucosa-associated when a living germ or toxin is to find access.----- Stoher has lymphoid tissue, is to sample the environmental antigen and shown small gaps between the normal epithelia of the participate with the initiation and maintenance of the local surface of the tonsil”.
    [Show full text]
  • Primary Splenic and Nodal Marginal Zone Lymphoma
    J. Clin. Exp. Hematopathol Vol. 45, No. 1, Aug 2005 Review Article Primary Splenic and Nodal Marginal Zone Lymphoma: Jacques Diebold, Agne`s Le Tourneau, Eva Comperat, Thierry Molina and Jose´ e Audouin Primary splenic and nodal marginal zone (MZ) lymphomas are rare small B cell lymphomas presenting with similar histopathologic features. The neoplastic cell population mostly consists of monocytoid B cells organized in a MZ pattern, associated with centrocytoid cells colonizing follicles. About 50% of cases have a monotypic plasma cell component. The different histopathologic patterns and differential diagnosis are discussed here. Both diseases share a similar immunophenotype, with the expression of B-cell associated antigens and restriction of immunoglobulin light chain. The only difference is the more frequent expression of IgD in splenic than in nodal lymphomas. The most recent findings in genetics and molecular biology are presented and discussed. The main clinical and biological symptoms are described and the similarity of some cases with Waldenstro¨ms macroglobulinemia is stressed. Both lymphomas present with the same type of bone marrow involvement with a high frequency of intravascular infiltrates, which can be associated with interstitial and nodular infiltrates. Transformation into diffuse large B cell lymphoma occurs in about 10 to 15% of the cases. The outcome in many splenic MZ lymphomas is characterized by a lengthy survival after splenectomy (9 to 13 years or longer), despite the absence of a consensus on the optimal treatment. Nodal MZ lymphoma has a more aggressive evolution and seems to only be curable at an early stage. Further studies are needed of both lymphomas to improve treatment and prognosis.
    [Show full text]
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Centers Differentiation Stages in Human Germinal Patterns Reflect
    Cutting Edge: Polycomb Gene Expression Patterns Reflect Distinct B Cell Differentiation Stages in Human Germinal Centers This information is current as of September 27, 2021. Frank M. Raaphorst, Folkert J. van Kemenade, Elly Fieret, Karien M. Hamer, David P. E. Satijn, Arie P. Otte and Chris J. L. M. Meijer J Immunol 2000; 164:1-4; ; doi: 10.4049/jimmunol.164.1.1 Downloaded from http://www.jimmunol.org/content/164/1/1 References This article cites 22 articles, 11 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/164/1/1.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. c Cutting Edge: Polycomb Gene Expression Patterns Reflect Distinct B Cell Differentiation Stages in Human Germinal Centers Frank M. Raaphorst,1* Folkert J. van Kemenade,* Elly Fieret,* Karien M.
    [Show full text]
  • 1 | Page: Immune Cells and Tissues Swailes Cells and Tissues of The
    Cells and Tissues of the Immune System N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 20: pp226-2480 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 21: pp396-429 Learning objectives 1) Identify the major cells of the immune system and briefly outline their function 2) Describe the general structure of lymphoid tissue 3) Differentiate between primary and secondary immune organs 4) Identify the thymus and discuss the role of its cells in ‘educating’ immature T-cells 5) Identify a lymph node and outline how an immune response is triggered here 6) Identify the spleen and describe the role of red and white pulp in filtering the blood and reacting to blood borne antigens 7) Differentiate between MALT in the oral cavity (tonsils) 8) Know where to find and how to identify examples of BALT and GALT Major Take Home Points A. Lymphoid tissues are composed of different types of lymphocytes and supporting cells within a scaffold of Type III collagen/reticular fibers B. The major primary lymphoid organs are encapsulated organs where immature lymphocytes are born (bone marrow) and become immunocompetent (thymus) C. The major secondary lymphoid organs are encapsulated organs where immunocompetent lymphocytes differentiate into effector cells after exposure to antigen in the blood (spleen) or lymph (nodes) D. Mucosa Associated Lymphoid Tissues (MALT) are un-encapsulated areas of lymphoid tissue within the mucosa of organs that can be identified by their lining epithelium (tonsils, GALT: ileum and appendix, BALT) 1 | Page: Immune Cells and Tissues Swailes A1: Organization of the immune system 5a A.
    [Show full text]
  • Mantle Cell Lymphoma Stefano A
    Editorials and Perspectives ers in myeloproliferative diseases: relationships with JAK2 Pascutto C, et al. Relation between JAK2 (V617F) mutation V617 F status, clonality, and antiphospholipid antibodies. J status, granulocyte activation, and constitutive mobilization Thromb Haemost 2007;5:1679-85. of CD34+ cells into peripheral blood in myeloproliferative 17. Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, disorders. Blood 2006;107:3676-82. Guerini V, et al. V617F JAK-2 mutation in patients with 23. Alvarez-Larrán A, Arellano-Rodrigo E, Reverter JC, essential thrombocythemia: relation to platelet, granulo- Domingo A, Villamor N, Colomer D, et al. Increased cyte, and plasma hemostatic and inflammatory molecules. platelet, leukocyte, and coagulation activation in primary Exp Hematol 2007;35:702-11. myelofibrosis. Ann Hematol 2008;87:269-76. 18. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, 24. Leibundgut EO, Horn MP, Brunold C, Pfanner-Meyer B, Colomer D, Villamor N, Bellosillo B, et al. Platelet turnover, Marti D, Hirsiger H, et al. Hematopoietic and endothelial coagulation factors, and soluble markers of platelet and progenitor cell trafficking in patients with myeloprolifera- endothelial activation in essential thrombocythemia: rela- tive diseases. Haematologica 2006;91:1465-72. tionship with thrombosis occurrence and JAK2 V617F allele 25. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman burden. Am J Hematol 2009;84:102-8. R. The presence of JAK2V617F mutation in the liver 19. Trappenburg MC, van Schilfgaarde M, Marchetti M, Spronk endothelial cells of patients with Budd-Chiari syndrome. HM, ten Cate H, Leyte A, et al. Elevated procoagulant Blood 2009;113:5246-9.
    [Show full text]
  • Molecular Mapping to Species Level of the Tonsillar Crypt Microbiota Associated with Health and Recurrent Tonsillitis
    Molecular Mapping to Species Level of the Tonsillar Crypt Microbiota Associated with Health and Recurrent Tonsillitis Anders Jensen1, Helena Fago¨ -Olsen2, Christian Hjort Sørensen2, Mogens Kilian1* 1 Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark, 2 Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Copenhagen University Hospital Gentofte, Copenhagen, Denmark Abstract The human palatine tonsils, which belong to the central antigen handling sites of the mucosal immune system, are frequently affected by acute and recurrent infections. This study compared the microbiota of the tonsillar crypts in children and adults affected by recurrent tonsillitis with that of healthy adults and children with tonsillar hyperplasia. An in-depth 16S rRNA gene based pyrosequencing approach combined with a novel strategy that included phylogenetic analysis and detection of species-specific sequence signatures enabled identification of the major part of the microbiota to species level. A complex microbiota consisting of between 42 and 110 taxa was demonstrated in both children and adults. This included a core microbiome of 12 abundant genera found in all samples regardless of age and health status. Yet, Haemophilus influenzae, Neisseria species, and Streptococcus pneumoniae were almost exclusively detected in children. In contrast, Streptococcus pseudopneumoniae was present in all samples. Obligate anaerobes like Porphyromonas, Prevotella, and Fusobacterium were abundantly present in children, but the species diversity of Porphyromonas and Prevotella was larger in adults and included species that are considered putative pathogens in periodontal diseases, i.e. Porphyromonas gingivalis, Porphyromonas endodontalis, and Tannerella forsythia. Unifrac analysis showed that recurrent tonsillitis is associated with a shift in the microbiota of the tonsillar crypts.
    [Show full text]
  • Leukaemic Phase of Mantle Zone (Intermediate) Lymphoma: Its Characterisation in 11 Cases
    J Clin Pathol: first published as 10.1136/jcp.42.9.962 on 1 September 1989. Downloaded from J Clin Pathol 1989;42:962-972 Leukaemic phase of mantle zone (intermediate) lymphoma: its characterisation in 11 cases M S POMBO DE OLIVEIRA,* E S JAFFE, D CATOVSKY* From the *Department ofHaematology and Cytogenetics, The Royal Marsden Hospital, London, and the Department ofPathology, National Cancer Institute, Bethesda, Maryland, United States ofAmerica SUMMARY Sixteen patients presented with B cell leukaemia (white cell count 26-269 x 109/1) which could not be classified as chronic lymphocytic (CLL), prolymphocytic leukaemia, or follicular lymphoma in leukaemic phase. Eleven patients (10 men, one woman) corresponded histologically to intermediate (INT) or mantle zone lymphoma, and five, with less well defined features, were designated small lymphocytic lymphoma with cleaved cells. The blood films showed a pleomorphic picture with lymphoid cells ofpredominantly medium size with nuclear irregularities and clefts. The membrane phenotype of the circulating cells showed strong immunoglobulin staining and reactivity with CD5 and FMC7 in all cases tested; CD1O was positive in six out of nine cases. The membrane phenotype of two of the five cases of small lymphocytic lymphoma was close to those of B-CLL and three resembled INT lymphoma. Bone marrow trephine biopsy specimens showed a diffuse pattern of infiltration in INT lymphoma. The median survival of these patients was less than two years, suggesting that a leukaemic presentation is associated with poor prognosis. By combining data from histology, membrane markers, and peripheral blood morphology, the leukaemic phase oftypical INTcopyright. lymphoma can be defined in most cases.
    [Show full text]
  • Lymphoid System IUSM – 2016
    Lab 14 – Lymphoid System IUSM – 2016 I. Introduction Lymphoid System II. Learning Objectives III. Keywords IV. Slides A. Thymus 1. General Structure 2. Cortex 3. Medulla B. Lymph Nodes 1. General Structures 2. Cortex 3. Paracortex 4. Medulla C. MALT 1. Tonsils 2. BALT 3. GALT a. Peyer’s patches b. Vermiform appendix D. Spleen 1. General Structure 2. White Pulp 3. Red Pulp V. Summary SEM of an activated macrophage. Lab 14 – Lymphoid System IUSM – 2016 I. Introduction Introduction II. Learning Objectives III. Keywords 1. The main function of the immune system is to protect the body against aberrancy: IV. Slides either foreign pathogens (e.g., bacteria, viruses, and parasites) or abnormal host cells (e.g., cancerous cells). A. Thymus 1. General Structure 2. The lymphoid system includes all cells, tissues, and organs in the body that contain 2. Cortex aggregates (accumulations) of lymphocytes (a category of leukocytes including B-cells, 3. Medulla T-cells, and natural-killer cells); while the functions of the different types of B. Lymph Nodes lymphocytes vary greatly, they generally all appear morphologically similar so cannot be 1. General Structures routinely distinguished in light microscopy. 2. Cortex 3. Lymphocytes can be found distributed throughout the lymphoid system as: (1) single 3. Paracortex cells, (2) isolated aggregates of cells, (3) distinct non-encapsulated lymphoid nodules in 4. Medulla loose CT associated with epithelium, or (4) encapsulated individual lymphoid organs. C. MALT 1. Tonsils 4. Primary lymphoid organs are sites where lymphocytes are formed and mature; they 2. BALT include the bone marrow (B-cells) and thymus (T-cells); secondary lymphoid organs are sites of lymphocyte monitoring and activation; they include lymph nodes, MALT, and 3.
    [Show full text]
  • Clinical Chemistry Trainee Council Pearls of Laboratory Medicine
    Clinical Chemistry Trainee Council Pearls of Laboratory Medicine www.traineecouncil.org TITLE: Lymph Node Structure and Function PRESENTER: Teresa S. Kraus, MD Slide 1: Hello, my name is Teresa Kraus, and I am an assistant professor and medical director of the clinical hematology laboratory at the University of Oklahoma Health Sciences Center. Welcome to this Pearl of Laboratory Medicine on “Lymph Node Structure and Function.” Slide 2: Primary lymphoid tissues are sites of foreign antigen-independent lymphoid differentiation. B cell precursors originate, and undergo the early stages of differentiation, in the bone marrow, and enter the circulation as mature naïve B cells. T cell progenitors originate in the bone marrow and migrate to the thymus where they undergo selection and mature into naïve T cells, which express either CD4 or CD8. The secondary lymphoid tissues include the lymph nodes, spleen, and mucosa-associated lymphoid tissue (MALT). At these sites, naïve B and T cells encounter foreign antigens and undergo antigen- dependent maturation. Slide 3: Lymphatic vessels are present throughout most of the body, and drain excess interstitial fluid from tissues, eventually returning the fluid to the circulation via the subclavian veins. Lymph nodes are present at multiple points along the lymphatic network, and are particularly frequent along major vessels; in the neck, axillae, and groin; the mediastinum, and mesentery. Slide 4: Lymph nodes are small, bean-shaped structures, usually measuring between 0.2 and 2 cm, and are surrounded by a fibrous capsule. Fibrous trabeculae projecting from the capsule lend structural support to the lymph node. The lymph node can be separated into three cellular compartments: the cortex, paracortex, and medulla.
    [Show full text]
  • Landscape of T Follicular Helper Cell Dynamics in Human Germinal Centers
    Landscape of T Follicular Helper Cell Dynamics in Human Germinal Centers Emmanuel Donnadieu, Kerstin Bianca Reisinger, Sonja Scharf, Yvonne Michel, Julia Bein, Susanne Hansen, This information is current as Andreas G. Loth, Nadine Flinner, Sylvia Hartmann and of September 28, 2021. Martin-Leo Hansmann J Immunol published online 22 July 2020 http://www.jimmunol.org/content/early/2020/07/21/jimmun ol.1901475 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/07/21/jimmunol.190147 Material 5.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 22, 2020, doi:10.4049/jimmunol.1901475 The Journal of Immunology Landscape of T Follicular Helper Cell Dynamics in Human Germinal Centers Emmanuel Donnadieu,*,1 Kerstin Bianca Reisinger,†,1 Sonja Scharf,† Yvonne Michel,† Julia Bein,†,‡ Susanne Hansen,† Andreas G. Loth,x Nadine Flinner,{ Sylvia Hartmann,†,‡ and Martin-Leo Hansmann†,‡,{ T follicular helper (Tfh) cells play a very important role in mounting a humoral response.
    [Show full text]
  • PRIMARY SPLENIC LYMPHOMA: DOES IT EXIST ? Paolo G
    review Haematologica 1994; 79:286-293 PRIMARY SPLENIC LYMPHOMA: DOES IT EXIST ? Paolo G. Gobbi, Giovanni E. Grignani, Ugo Pozzetti, Daniele Bertoloni, Carla Pieresca, Giovanni Montagna, Edoardo Ascari Clinica Medica II, Dipartimento di Medicina Interna, Università degli Studi di Pavia, IRCCS Policlinico S. Matteo, Pavia, Italy ABSTRACT The number of primary splenic lymphomas being reported is increasing despite the rarity of this malignancy, but what really constitutes a lymphoma arising primarily in the spleen is still a matter of discussion. The authors choose the “restrictive” definition of a lymphoma involving the spleen and the splenic hilar lymph nodes only. In this way, the risk of epidemiologic or clinical overestimation is avoided. The clinical features of this condition are characterized by non specific symptoms and signs, while the prevailing histology is that of a low-grade or intermediate-type lymphoma. Disease spreading outside of the spleen and its hilar lymph nodes is the single most important factor asso- ciated with an unfavorable prognosis. From this usual clinical picture, two distinct nosologic entities can be outlined on the basis of histologic and immunologic peculiarities: splenic lymphoma with circulating villous lymphocytes and marginal-zone splenic lymphoma. The former arises from follicular center cells and is char- acterized by hypersplenism, variable percentages of circulating villous lymphocytes and, fre- quently, a monoclonal gammopathy. The latter originates from a peculiar splenic B-cell structure separated by the mantle zone. The proliferating cells are medium-sized KiB3-positive lympho- cytes with round or cleaved nuclei and pale cytoplasm, which surround follicular centers and infiltrate the mantle zone.
    [Show full text]