1 A Front-Face ‘SNi Synthase’ Engineered from a Retaining 2 ‘Double-SN2’ Hydrolase 3 Javier Iglesias-Fernández1,2ψΦ, Susan M. Hancock3ψ, Seung Seo Lee3, 7ψ, Maola Khan3, Jo 4 Kirkpatrick3ς, Neil J. Oldham3‡, Katherine McAuley4, Anthony Fordham-Skelton5†, 5 Carme Rovira1,2,6* and Benjamin G. Davis3* 1 6 Departament de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 7 Barcelona, Spain 2 8 Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i 9 Franquès 1, 08028 Barcelona, Spain 3 10 Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield 11 Road, Oxford OX1 3TA, UK 4 12 Diamond Light Source, Diamond House, Harwell Science & Innovation Campus, Didcot, 13 Oxfordshire, OX11 0DE, UK 14 5 CLRC, Daresbury Laboratory, Warrington, Cheshire, UK 6 15 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 16 08010 Barcelona, Spain. 7 17 School of Chemistry, University of Southampton, Highfield, Southampton, 18 SO17 1BJ, UK 1 19 *
[email protected];
[email protected] 20 ψ These authors contributed equally. 21 † Deceased. 22 Φ Current address: Department of Chemistry, King's College London, London SE1 1DB, UK 23 ‡ Department of Chemistry, University Park, Nottingham, NG7 2RD, UK 24 ς Current address: Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 25 11, 07745 Jena, Germany 26 2 27 Abstract 28 SNi-like mechanisms with ‘front-face’ leaving group departure and nucleophile approach have 29 been observed experimentally and computationally in chemical and enzymatic substitution at 30 α-glycosyl electrophiles. Since SNi-vs-SN1-vs-SN2-substitution pathways can be energetically 31 comparable, engineered switching could be feasible.