Newaps News Nov 2005 1.Qxp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ESI NEWS Volume 5, Issue 2, Autumn 2010
The Erwin Schrödinger International Boltzmanngasse 9/2 Institute for Mathematical Physics A-1090 Vienna, Austria ESI NEWS Volume 5, Issue 2, Autumn 2010 Editorial nized by A. Rebhan (Vienna), S. Husa Contents (Univ. Illes Balears, Spain) and K. Land- Klaus Schmidt steiner (IFT Madrid, Spain) and ran for Editorial1 three months from August – October 2010. This programme studied quantum chromo- Stefan Hollands: Correlators in de- dynamics (QCD), the theory of the strong Sitter spacetime and the ‘heat As many readers of nuclear interactions and focussed on the death’ of the Universe3 this newsletter will theory behind some of the expected – and know already, the year some unexpected – properties of the state Letters in Support of the ESI 10 2010 was ‘interesting’ of matter in heavy-ion collisions at the News from the ESI Community 19 for the ESI. Relativistic Heavy Ion Collider (RHIC) at Scientifically, the the Brookhaven National Laboratory in the Current and Future Activities of second half of this USA, for example. Two workshops were the ESI 22 year continued very well. The programme part of this programme, one on AdS holog- raphy and the quark-gluon plasma, and one Erwin Schrödinger Lectures 24 Matter and radiation, organized by V.Bach (Mainz), J. Fröhlich (ETH Zürich) und J. on Hot matter. More than 100 participants Senior Research Fellows’ Lecture Yngvason (Vienna) ended on July 31. Its visited the ESI for various periods of time Courses 2011 24 subject matter was the quantum mechanical during this activity. description of non-relativistic matter, with The last thematic programme in 2010 Lectures on physical and math- about 50 participating scientists. -
Nick Metropolis Edward Teller Mici Teller Arianna Rosenbluth Marshall
Mici Teller Edward Teller Nick Metropolis Arianna Rosenbluth Marshall Rosenbluth An Interview vith Bernie Alder Bernie Alder 1997, from NERSC , part of the Stories of the Development of Large Scale Scientific Computing at Lawrence Livermore National Laboratory series. It is little known that THE algorithm was independently discovered by Bernie Alder, Stan Frankel and Victor Lewinson. Quoting Alder: ..we started out with a configuration, a solid like order configuration, and then jiggled the particles according to the pulse rate distribution. And that is, in fact, known now as the Monte Carlo Method—it was presumably independently developed at Los Alamos by Teller, Metropolis, and Rosenbluth. They actually got all the credit. My guess is we did it first at Cal Tech. It's not that difficult to come up with that algorithm, which, by the way, I think is one of, if not THE, most powerful algorithms Actually, In a footnote of the original paper by Metropolis et al. they credited Alder, Frankel and Lewinson on this, but this fact has been almost forgotten over the years. Furthermore Alder et al. did not give a general formulation for the algorithm but only a specialized version for hard spheres." Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid! B. J. Alder, S. P. Frankel and V. A. Lewinson 1955! The Journal of Chemical Physics, 23, 417 (1955)! The paper mentioned above. Quoting Alder:! ! I was still working on my Ph.D. thesis. He (Frankel) was really well known in computing circles. He actually put the Monte Carlo Method on the FERRANTI Computer and ran it all summer. -
Dtra-Appeal.Pdf
FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1717 K Street NW #209 Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] Board of Sponsors (Partial List) *Sidney Altman December 12, 2003 *Philip W. Anderson *Kenneth J. Arrow (202)454-4691 *Julius Axelrod MG Trudy H. Clark, Deputy Director *David Baltimore *Baruj Benacerraf Defense Threat Reduction Agency *Hans A. Bethe *J. Michael Bishop 8725 John J. Kingman Road *Nicolaas Bloembergen *Norman Borlaug Ft. Belvoir, VA 22060-6201 *Paul Boyer Ann Pitts Carter *Owen Chamberlain Morris Cohen RE: FOIA Appeal, Case No. 03-125 *Stanley Cohen Mildred Cohn *Leon N. Cooper *E. J. Corey *James Cronin Dear General Clark: *Johann Deisenhofer Ann Druyan *Renato Dulbecco John T. Edsall This is an appeal of the initial denial of my request under the Freedom of Paul R. Ehrlich George Field Information Act (FOIA) for a copy of an unclassified DTRA-funded report *Val L. Fitch *Jerome I. Friedman entitled "Lessons from the Anthrax Attacks: Implications for U.S. Bioterrorism John Kenneth Galbraith Preparedness," April 2002. A copy of the December 12, 2003 DTRA denial *Walter Gilbert *Donald Glaser letter is enclosed. *Sheldon L. Glashow Marvin L. Goldberger *Joseph L. Goldstein *Roger C. L. Guillemin I request that you reverse the initial decision and release the requested *Herbert A. Hauptman *Dudley R. Herschbach report, on the following grounds: *Roald Hoffmann John P. Holdren *David H. Hubel *Jerome Karle 1. The cited FOIA exemption 2 (High) is not applicable. In other words, it is *H. Gobind Khorana not true that the requested document, if disclosed, might be used to *Arthur Kornberg *Edwin G. -
Plasma Physics in the 20Th Century As Told by Players”
Eur. Phys. J. H 43, 337{353 (2018) https://doi.org/10.1140/epjh/e2018-90061-5 THE EUROPEAN PHYSICAL JOURNAL H Editorial Editorial introduction to the special issue \Plasma physics in the 20th century as told by players" Patrick H. Diamond1,a , Uriel Frisch2, and Yves Pomeau3 1 University of California San Diego, La Jolla, CA 92093-0319, USA 2 Universit´eC^oted'Azur, OCA, Lab. Lagrange, CS 34229, 06304 Nice Cedex 4, France 3 Ladhyx, Ecole´ Polytechnique, Palaiseau, France Received 31 October 2018 Published online 30 November 2018 c EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature, 2018 Our ancestors lived in a world where { as far as they were aware { electrons and ions lived happily bound together. But with suitable conditions, e.g. low density and/or high temperature, electrons and ions will unbind and we obtain a plasma, a state of matter of which we became increasingly aware in the 20th century, and which pervades our universe near and far. There are also many applications of plasma physics: chip etching, TV screens, torches, propulsion, fusion (through magnetic or inertial confinement), astrophysics and space physics, and laser physics, to cite just a few. At the crossroads of electrodynamics, continuum physics, kinetic theory and nonlinear physics, plasma physics enjoys an abundance of riches. Actually, so much that we can only cover a fraction of its history in this limited volume. The history of plasma physics presented here covers mostly the period from 1950 to 2000. The issue is focussed both on fundamentals and on applications in controlled fusion through magnetic confinement, which in turn raises a host of fundamental and interesting questions in various areas. -
Online Particle Physics Information
1 Online Particle Physics Information Online Particle Physics Information 1 Introduction . 1 2 Particle Data Group (PDG) resources . 2 3 Particle Physics Information Platforms . 2 4 Literature Databases . 3 5 Particle Physics Journals and Conference Proceedings Series . 4 6 Conference Databases . 4 7 Research Institutions . 4 8 People........................................... 4 9 Experiments . 5 10 Jobs............................................ 5 11 Software Packages and Repositories . 6 11.1 Particle Physics Software . 6 11.2 Astrophysics Software . 7 11.3 Web Apps . 8 11.4 Mobile Apps . 8 12 Data repositories . 8 12.1 Particle Physics . 8 12.2 Astrophysics . 9 12.3 General Physics . 10 13 Data preservation activities . 10 13.1 Particle Physics . 10 13.2 Astrophysics . 11 14 Particle Physics Education and Outreach Sites . 11 14.1 Science Educators’ Networks . 11 14.2 Physics Courses . 12 14.3 Masterclasses . 12 14.4 General Sites . 13 14.5 General Physics Activities . 13 14.6 Particle Physics Activities . 13 14.7 Lab Education Offices . 15 14.8 Educational Programs of Experiments . 17 14.9 News . 18 14.10 Art in Physics . 19 14.11 Blogs and Twitter . 19 Revised August 2019 by M. Moskovic (CERN). 1 Introduction The collection of online information resources in particle physics and related areas presented in this chapter is of necessity incomplete. An expanded and regularly updated online version can be found at: http://library.cern/particle_physics_information Suggestions for additions and updates are very welcome.1 1Please send comments and corrections to [email protected] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update 6th December, 2019 11:48am 2 Online Particle Physics Information 2 Particle Data Group (PDG) resources • Review of Particle Physics (RPP): A comprehensive report on the fields of particle physics and related areas of cosmology and astrophysics, including both review articles and a compilation/evaluation of data on particle properties. -
Jewish Scientists, Jewish Ethics and the Making of the Atomic Bomb
8 Jewish Scientists, Jewish Ethics and the Making of the Atomic Bomb MERON MEDZINI n his book The Jews and the Japanese: The Successful Outsiders, Ben-Ami IShillony devoted a chapter to the Jewish scientists who played a central role in the development of nuclear physics and later in the construction and testing of the fi rst atomic bomb. He correctly traced the well-known facts that among the leading nuclear physics scientists, there was an inordinately large number of Jews (Shillony 1992: 190–3). Many of them were German, Hungarian, Polish, Austrian and even Italian Jews. Due to the rise of virulent anti-Semitism in Germany, especially after the Nazi takeover of that country in 1933, most of the German-Jewish scientists found themselves unemployed, with no laboratory facilities or even citi- zenship, and had to seek refuge in other European countries. Eventually, many of them settled in the United States. A similar fate awaited Jewish scientists in other central European countries that came under German occupation, such as Austria, or German infl uence as in the case of Hungary. Within a short time, many of these scientists who found refuge in America were highly instrumental in the exceedingly elabo- rate and complex research and work that eventually culminated in the construction of the atomic bomb at various research centres and, since 1943, at the Los Alamos site. In this facility there were a large number of Jews occupying the highest positions. Of the heads of sections in charge of the Manhattan Project, at least eight were Jewish, led by the man in charge of the operation, J. -
History of Physics Newsletter Volume VII, No. 3, Aug. 1998 Forum Chair
History of Physics Newsletter Volume VII, No. 3, Aug. 1998 Forum Chair From the Editor Forum News APS & AIP News Book Review Reports Forum Chair Urges APS Centennial Participation The American Physical Society celebrates its 100th anniversary in Atlanta, Georgia, at an expanded six-day meeting from March 20-26, 1999, which will be jointly sponsored by the American Association of Physics Teachers. This will be the largest meeting of physicists ever held, and the APS Forum on the History of Physics will play a central role in making it a truly memorable event. The 20th century has been the Century of Physics. The startling discoveries of X-rays, radioactivity, and the electron at the end of the 19th century opened up vast new territories for exploration and analysis. Quantum theory and relativity theory, whose consequences are far from exhausted today, formed the bedrock for subsequent developments in atomic and molecular physics, nuclear and particle physics, solid state physics, and all other domains of physics, which shaped the world in which we live in times of both peace and war. A large historical wall chart exhibiting these developments, to which members of the Forum contributed their expertise, will be on display in Atlanta. Also on display will be the well-known Einstein exhibit prepared some years ago by the American Institute of Physics Center for History of Physics. Two program sessions arranged by the Forum at the Atlanta Centennial Meeting also will explore these historic 20th-century developments. The first, chaired by Ruth H. Howes (Ball State University), will consist of the following speakers and topics: John D. -
Fesac Finalrpt.Pdf
OAK RIDGE NATIONAL LABORATORY MANAGED BY LOCKHEED MARTIN ENERGY RESEARCH CORPORATION PHONE: (423) 574-5510 FOR THE U.S. DEPARTMENT OF ENERGY FAX: (423) 576-6118 INTERNET: [email protected] POST OFFICE BOX 2008 OAK RIDGE, TN 37831-6248 September 16, 1999 Dr. Martha A. Krebs Director, Office of Science U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20858 Dear Dr. Krebs: The FESAC is pleased to be able to complete its response to your charge of October 9, 1998, in regard to … “leading a community assessment of the restructured program thus far, including recommendations for further redirection given projected flat budgets for fusion. With this assessment as background, I would like your recommendations as to the proof-of-principle experiments now under review, as well as your recommendations regarding the balance of the program between tokamak and non-tokamak physics, and between magnetic and inertial fusion energy. Working with the Office of Fusion Energy Sciences (OFES), please develop goals and metrics to use in making your recommendations. I would also welcome any other recommendations on program content, emphasis, or balance.” In discussion with Dr. N. A. Davies, Director of OFES, it was agreed to frame the sub-charges as: · Recommend a balance between MFE and IFE; · Recommend priorities in the MFE program; · Recommend priorities in the IFE program; and · Recommend a course of action for the three proof-of-principle (POP) proposals. During the past year there has been a considerable amount of activity which helped us reach our conclusions. The FESAC has visited a number of fusion sites and has heard extensive presentations on the program. -
Iter Ita Newsletter
ITER ITA NEWSLETTER No. 18, OCTOBER– NOVEMBER–DECEMBER 2004 INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, AUSTRIA ISSN 1727–9852 COMMON MESSAGE FROM FOURTH PREPARATORY MEETING FOR ITER DECISION MAKING (IAEA, Vienna, 9 November 2004) Delegations from China, the European Union, Japan, the Republic of Korea, the Russian Federation and the United States of America met at the IAEA headquarters in Vienna on 9 November 2004 to advance the ITER negotiations. The two potential Host Parties, the European Union and Japan, presented the results of recent intensive bilat- eral discussions on the balance of roles and responsibilities of Host and non-Host in the joint realization of ITER in the frame of a six-Party international cooperation. These discussions will continue in the near future with the aim of aligning the two Parties’ views. All Parties were greatly encouraged by the positive atmosphere and expressed their optimism that the process was now proceeding effectively towards a fruitful conclusion among the six Parties in the near future. TWENTIETH IAEA FUSION ENERGY CONFERENCE 1–6 November 2004, Vilamoura, Portugal Opening Speech by Werner Burkart, Deputy Director General, IAEA Excellencies, Ladies and Gentlemen, Dear Participants of the Twentieth IAEA Fusion Energy Conference: On behalf of the Director General, Dr. ElBaradei, of the International Atomic Energy Agency, and on my own behalf, I welcome all participants to this 20th IAEA Fusion Energy Conference. Since the beginning of its support of controlled nuclear fusion in the late 1950s, the IAEA has enhanced world- wide commitment to fusion by creating awareness of the benefits of magnetic and inertial confinement. -
11 European Fusion Theory Conference
SCIENTIFIC PROGRAMME COMMITTEE F. Zonca(chair) ENEA, Italy D. Borba IST, Portugal M. Lisak VR, Sweden S. Cappello CNR, Italy V. Naulin Risø, Denmark F. Castejon CIEMAT, Spain M. Ottaviani CEA, France D. Van Eester TEC, Belgium O. Sauter CRPP, Switzerland th S. Günter IPP, Germany M. Tokar TEC, Germany 11 European J. Heikkinen Tekes, Finland M. Vlad INFLPR, Romania P. Helander UKAEA, UK Fusion Theory Conference Organised by: Association EURATOM-CEA and Université de Provence IMPORTANT DATES 30 April 2005 Deadline for submission of abstracts 15 June 2005 Information for contributors 30 June 2005 Deadline for registration and hotel reservation 26 -28 September 2005 11th EFTC LOCAL ORGANISING COMMITTEE M. Ottaviani (chairman) P. Beyer H. Capes A. Corso-Leclercq T. Hutter (scientific secretary) G. Huysmans (webmaster) R. Stamm Mailing Address: Mrs. A. Corso-Leclercq 11th EFTC Conference Secretariat 26 -28 September 2005 DRFC/SCCP/G2IC, bât. 513, Conference Centre CEA Cadarache, Aix-en-Provence, France 13108 St-Paul-lez-Durance, France Website : http://www-fusion-magnetique.cea.fr/eftc11/index.html E-mail : [email protected] Announcement and Call for Abstracts Photos by J-C Carbone SUBJECT MATTER A confirmation of receipt will be sent by e-mail within a week. Submissions printed on paper should be made only if severe problems The 11th European Fusion Theory Conference will be held in Aix-en- arise with electronic submission. The Scientific Committee will select the Provence in the south of France from the 26th to the 28th of September contributions on the basis of the submitted abstracts. Authors will be 2005. -
Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert
SE0100262 TRITA-A Report ISSN 1102-2051 VETENSKAP OCH ISRN KTH/ALF/--01/4--SE IONST KTH Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert Research and Training programme on CONTROLLED THERMONUCLEAR FUSION AND PLASMA PHYSICS (Association EURATOM/NFR) FUSION PLASMA PHYSICS ALFV N LABORATORY ROYAL INSTITUTE OF TECHNOLOGY SE-100 44 STOCKHOLM SWEDEN PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK TRITA-ALF-2001-04 ISRN KTH/ALF/--01/4--SE Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert VETENSKAP OCH KONST Stockholm, June 2001 The Alfven Laboratory Division of Fusion Plasma Physics Royal Institute of Technology SE-100 44 Stockholm, Sweden (Association EURATOM/NFR) Printed by Alfven Laboratory Fusion Plasma Physics Division Royal Institute of Technology SE-100 44 Stockholm PLASMA PHYSICS AND CONTROLLED FUSION RESEARCH DURING HALF A CENTURY Bo Lehnert Alfven Laboratory, Royal Institute of Technology S-100 44 Stockholm, Sweden ABSTRACT A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. -
Who Got Moseley's Prize?
Chapter 4 Who Got Moseley’s Prize? Virginia Trimble1 and Vera V. Mainz*,2 1Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, United States 2Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States *E-mail: [email protected]. Henry Gwyn Jeffreys Moseley (1887-1915) made prompt and very skilled use of the then new technique of X-ray scattering by crystals (Bragg scattering) to solve several problems about the periodic table and atoms. He was nominated for both the chemistry and physics Nobel Prizes by Svante Arrhenius in 1915, but was dead at Gallipoli before the committees finished their deliberations. Instead, the 1917 physics prize (announced in 1918 and presented on 6 June 1920) went to Charles Glover Barkla (1877-1944) “for discovery of the Röntgen radiation of the elements.” This, and his discovery of X-ray polarization, were done with earlier techniques that he never gave up. Moseley’s contemporaries and later historians of science have written that he would have gone on to other major achievements and a Nobel Prize if he had lived. In contrast, after about 1916, Barkla moved well outside the scientific mainstream, clinging to upgrades of his older methods, denying the significance of the Bohr atom and quantization, and continuing to report evidence for what he called the J phenomenon. This chapter addresses the lives and scientific endeavors of Moseley and Barkla, something about the context in which they worked and their connections with other scientists, contemporary, earlier, and later. © 2017 American Chemical Society Introduction Henry Moseley’s (Figure 1) academic credentials consisted of a 1910 Oxford BA with first-class honors in Mathematical Moderations and a second in Natural Sciences (physics) and the MA that followed more or less automatically a few years later.