Tate's Thesis
Total Page:16
File Type:pdf, Size:1020Kb
学士学位论文 Tate 的论文 作者姓名: 刘浩浩 学科专业: 数学与应用数学 导师姓名: Benoît Stroh 教授 欧阳毅 教授 完成时间: 二〇一九年五月一日 University of Science and Technology of China A dissertation for bachelor’s degree Tate’s Thesis Author: Haohao Liu Speciality: Mathematics and Applied Mathematics Supervisors: Prof. Benoît Stroh, Prof. Yi Ouyang Finished time: May 1, 2019 中国科学技术大学本科毕业论文 Acknowledgements 撰写论文期间,我得到了两位老师的指导,他们是:中国科学技术大学的欧 阳毅教授和巴黎六大的 Benoît Stroh 教授。我感谢欧阳老师所给的选题建议,让 我有机会仔细学习 Tate’s thesis 这一优美而重要的工作。欧阳老师也为我提供了 关于参考资料的宝贵意见,论文修改也花费了他诸多时间。Stroh 老师具体指导 我的学习,他看待问题观点新颖,和他的讨论每每让我眼前一亮。他指出我理解 的不足,并且制定了论文的具体内容。在此对两位老师深表谢意。 Please send me an email if you note any mistakes: [email protected]. 中国科学技术大学本科毕业论文 Contents 中文内容摘要 ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 3 英文内容摘要 ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 4 Chapter 1 简介/Introduction ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 6 Chapter 2 经典理论/Classical Theory ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 7 2.1 Dedekind zeta function ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 7 2.1.1 General Minkowski space ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 7 2.1.2 Functional equation ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 10 2.2 Zeta function of global function field ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 12 2.2.1 Rational expression ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 15 2.2.2 Functional equation ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 16 2.3 Dirichlet Lfunction ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 18 2.3.1 Number field ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 18 2.3.2 Function field ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 21 Chapter 3 Tate 的方法/Tate’s Thesisꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 24 3.1 The local theory ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 24 3.1.1 Absolute value ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 25 3.1.2 characterꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 25 3.1.3 Measure ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 27 3.1.4 Local zeta function ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 27 3.1.5 Computation for 휌(푐) ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 29 3.2 The global theory ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 32 3.2.1 Quasicharacter ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 32 3.2.2 Global zeta functionꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 35 3.3 The classical theory ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 39 3.3.1 Admissibility ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 39 3.3.2 Connection between global, local, classical zeta functionsꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 40 Bibliography ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 44 1 中国科学技术大学本科毕业论文 Appendix A 补充材料/Complementary ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 45 A.1 Dual group ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 45 A.2 Fourier Transformation ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 46 A.2.1 Poisson formula ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 46 A.3 Restricted Productꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 48 A.3.1 Restricted topologyꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 48 A.3.2 Quasicharacterꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 48 A.3.3 Induced measure and integrationꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 49 A.4 Adèle ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 50 A.4.1 Fundamental domain for 픸퐾 /퐾 ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 50 A.5 Idèle ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 51 A.5.1 Fundamental domain for 픸1/퐾∗ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ ꞏ 52 2 中国科学技术大学本科毕业论文 中文内容摘要 这是 Tate 的博士论文的读书笔记。在函数域情形,휁 函数的函数方程的经典 证明用到的 RiemannRoch 定理,实际上是 퐴푑푒푙푒 上的 Poisson 求和公式的推论。 关键词:Zeta 函数,函数方程,抽象调和分析 3 中国科学技术大学本科毕业论文 Abstract This is a note of Tate’s Ph.D. thesis. The classical proof of the functional equation of 휁 function uses RiemannRoch theorem, which is a corollary of the adelic Poisson summation formula. Key Words: zeta function; functional equation; abstract harmonic analysis 4 中国科学技术大学本科毕业论文 Notation ℕ The set of natural numbers (containing 0). 퐺(ℂ|ℝ) 퐺(ℂ|ℝ) = 퐺푎푙(ℂ|ℝ). 푡ℎ 휇푛 The set of 푛 roots of unity in ℂ. 픽푞 The finite field with 푞 elements. 픬퐾 For a global field 퐾, 픬퐾 refers to its ring of integers. ∗ ∗ 푈퐾 , 픬퐾 For a number field 퐾, both 푈퐾 and 픬퐾 refer to the group of units of 퐾. 푊퐾 , 푤퐾 For a number field 퐾, 푊퐾 is the set of roots of unity in 퐾. 푤퐾 denotes its order. 퐶푙퐾 , ℎ퐾 For a global field 퐾, 퐶푙퐾 denotes its class group and ℎ퐾 de notes the class number (i.e., the order of 퐶푙퐾 ). 푅퐾 For a number field 퐾, 푅퐾 denotes its regulator.