<I>Panulirus, Scyllarus</I> and &L

Total Page:16

File Type:pdf, Size:1020Kb

<I>Panulirus, Scyllarus</I> and &L BULLETIN OF MARINE SCIENCE, 49(3): 699-714,1991 DIFFERENCES IN INSHORE-OFFSHORE AND VERTICAL DISTRIBUTION OF PHYLLOSOMA LARVAE OF PANULIRUS, SCYLLARUS AND SCYLLARIDES IN THE FLORIDA KEYS IN MAY-JUNE, 1989 Cynthia Yeung and Michael F. McGowan ABSTRACT As part of a multidisciplinary study of recruitment to South Florida reefs, lobster phyl- losoma larvae were sampled with a MOCNESS to describe their vertical and horizontal distribution in relation to coastal oceanography. A total of 850 phyllosomata of the genus Panulirus. 200 of the genus Scyllarus. and 43 of the genus Scyllarides were caught at 26 stations. The phyllosomata of Scyllarus spp. were more abundant near shore, while those of Panulirus spp. phyllosomata were distinctly more abundant at offshore stations. All stages of Scyllarus were present in comparable proportions, but 60% of Panulirus were stage-I larvae. Scyllarides phyllosomata were similar to Panu/irus in distribution and stage composition, Limited data from three additional anchor stations showed small range of diel vertical mi- gration in the upper 75 m by Panu/irus stages IV-VIII. Vertical migration crossed the ther- mocline but did not go below the 24° C isotherm. These preliminary data support the hy- pothesis that Scyllarus is locally recruited while Panu/irus and Scyllarides are recruited from upstream populations. The phyllosoma larvae of the spiny lobsters (Palinuridae) have an extended planktonic life estimated to last 6 to 12 months (Lewis, 1951; Sims, 1966; Chit- tleborough and Thomas, 1969; Phillips et a1., 1979; Kittaka, 1988; Kittaka and Ikegami, 1988; Kittaka and Kimura, 1989). During this larval period they are susceptible to long-distance transport by local and oceanic circulation, and their survival is critically affected by physical oceanographic processes, Studying the larval distribution of these species in the oceanographic context assists in the de- duction of linkages between the variability of the physical and the biological regimes, and constitutes a key aspect of recruitment research. Although the long planktonic duration favors long-distance dispersal (Thorson, 1961), local oceanographic features such as gyres and countercurrents have been implicated in the entrainment and retention of phyllosomata in South Africa (Lazarus, 1967), California (Johnson, 1960a, 1960b, 1971a, 1974), and Australia (Phillips et a1., 1978) for different palinurid species of the genus Panulirus. Some active control over advection is believed to be exercised through diurnal vertical migration of the phyllosomata, by which they encounter currents flowing in op- posite directions at different depths and achieve a horizontal distribution con- ducive to retention (Johnson, 1971a; Rimmer and Phillips, 1979; Phillips, 1981). In the Florida Keys, near the northern and down-current limit of the range of Panulirus argus, gyres and countercurrents have also been observed (Brooks and Niiler, 1975; Lee, 1975; Lee and Mayer, 1977) which might promote the retention and, ultimately, the recruitment oflocally-spawned phyllosomata to maintain the large adult populations. Previous studies of the distribution of phyllosomata in the southern Straits of Florida (Lewis, 1951; Ingle et a1., 1963; Robinson and Dimitriou, 1963b; Sims and Ingle, 1966; Richards and Potthoff, 1980) have not treated the phyllosomata of the slipper lobster genera Scyllarus and Scyllarides (Scyllaridae) though they are common in the plankton in this area (Robinson and Dimitriou, 1963b; Robertson, 1968a; 1968b; Little, 1977; Lyons, 1980). As was suggested for larval fish species (Miller et al., 1988), description and comparison 699 700 BULLETINOFMARINESCIENCE,VOL.49, NO.3, 1991 25.5 • 1 .2 25.0 .3 .5 .7 24.5 .22 .20 • 18 24.0 w 82.5 82.0 81.5 81.0 80.5 80.0 C 25.5 ;:) l- S 25.0 z...;:~.. ./ .51 .,..fi •?29 " .":':'~'; .~ DavlIR_ .42 ,,~ ".- ~ .30 .44 24.5 .23 '. ~ ..39.40 • 4~ 48 .25 • .35 Sombrero Roe' .27 Cosgrove Shoal Looe Key 24.0 I 82.5 82.0 81.5 81.0 80.5 80.0 LONGITUDE Figure 1. Map showing locations of the MOCNESS and CTD stations during SEFCAR cruise CA8906 Leg 1, 26-29 May 1989 (upper) and Leg 2,30 May-5 June 1989 (lower). XBT stations, not shown, account for out of sequence station numbers. of the spatial distribution across genera might reveal how the interaction of bi- ological and hydrographic mechanisms affect the recruitment process. In this study we quantitatively describe and compare the horizonta1.distribution and abundance of phyllosomata of Scyllarus and Scyllarides, as well as Panulirus, in the Florida Keys during 26 May-5 June 1989. We present data on vertical distribution and preliminary observations of vertical migration. We describe the distributions of larvae with regard to advective loss or retention in countercurrents. Finally, we discuss the implications of the observed distributions to contrasting recruitment strategies among Panulirus and Scyllarus in the Florida Keys. METHODS This study is part of the initial phase of the multidisciplinary Southeastern Florida and Caribbean Recruitment (SEFCAR) project investigating the ecological factors affecting the recruitment of reef organisms to this area. Field sampling was conducted in the Florida Keys from the R/V CALANUS during SEFCAR cruise CA8906 26 May-5 June 1989. The study area (Fig. 1) stretched alongshore from Carysfort Reef in the northeast to Cosgrove Shoal in the southwest. Sampling stations were placed 5 to 10 km apart along transects which extended normal to the shoreline from the edge of the YEUNG AND McGOWAN: DISTRIBUTION OF PHYLLOSOMATA IN THE FLORIDA KEYS 701 10.0 9.0 8.0 ~ N 7.0 E o 0 o '-.. 6.0 '0 I o U I- 5.0 <t: ~U 4.0 C --l 3.0 2.0 o 1.0 0.0 DAY (n=!?) NIGHT (n=9) Figure 2. Day versus night comparison ofln-transformed standardized catch ofphyllosomata (catch ·10 m-2); n = number of samples. reef tract (2-4 kIn offshore) to the approximate edge of the shelf (30 km offshore, or less). The cruise was divided into two legs. During the first leg (26-29 May) four transects running offshore from Carysfort Reef, Tennessee Reef, Looe Key, and Key West, were sampled. During the second leg (30 May-5 June) five transects were sampled: Cosgrove Shoal, Looe Key, Sombrero Reef, Davis Reef, and Carysfort Reef. Sampling was carried out continuously day and night, depending on the time the ship arrived on station (Table I). The means of the abundance of total phyllosomata (natural-log transformed) caught at day (N = 17) versus night (N = 9) stations (Fig. 2) were not significantly different (t.J.O'.24= 0.475, Pob",rved= 0.639, t-test, Sokal and Rohlf, 1981), therefore no adjustments in catch were made for day- night sampling bias. In addition to the 26 standard stations, 3 stations were made at the same location (stations 38-40) at Looe Key on 2 June (Fig. 1), consecutively sampling at 0245, 0805, and 1818 Universal Time (UT) to investigate the diet vertical migration pattern ofthe plankters. Local time was 4 h earlier than Universal Time. Due to equipment failure, samples were not collected during the entire 24-h cycle, but samples from these three samples were examined for preliminary indications of a diel vertical migration. A l_m2 MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System, Wiebe et aI., 1976) was employed in sampling. It has nine nets of 0.333-mm mesh-size which can be opened and closed sequentially at the desired depth by electronic signals sent through a conducting cable from the surface. A flowmeter and conductivity-temperature depth (CTD) sensors are attached to the net frame. Data from these devices are transmitted back up the towing wire to a shipboard computer for recording and real-time plotting. For our sampling, the first in the set of nine nets was fished obliquely from the surface down to 200 m or to the closest multiple of25 m, if the depth of water at the station was less than 200 m. Each subsequent net fished approximately 250 m3 within 25 m strata as the MOCNESS was towed to the surface at a vertical ascent rate of approximately 5 m· min-I. The depth- stratified samples of the upward tow were used in our data analysis. Plankton samples were preserved in formalin and seawater, and were later transferred to 70% ethanol. Phyllosomata were sorted from the samples, and then identified to the lowest taxonomic level possible and assigned stages using literature references (Lewis, 1951; Robertson, 1968a, 1968b, 1968c, 1969a, 1969b, 1969c, 1971, 1979; Baisre and Ruiz de Quivedo, 1982) for confirmation or elimination of the possible species present. Following Lewis (1951), 11 stages for the entire larval development were assigned to Panu/irus, 9 stages to Scyllarus based on the maximum number of stages assigned to Western Atlantic Scyllarus species by Robertson (1968b), and 11 stages to Scyllarides based on Robertson (1969c). The catch of each net was standardized to numbers per 1,000 m3 of seawater (no. of phyllosomata per 1,000 m3 = catch x 1,000 -;- volume filtered). This concentration ofphyllosomata was assigned to the mean depth that each net fished to illustrate the vertical distribution. The catch per unit volume was converted to abundance (catch under an area) by multiplying by the depth fished by the net. The 702 BULLETIN OF MARINE SCIENCE, VOL. 49, NO.3, 1991 Table I. Station data and catch ofpalinurid and scyllarid phyllosomata on cruise CA8906, 26 May- 5 June 1989 (Catch from the 24h anchor stations 38, 39, 40 are excluded from the total) Latitude Longitude Number of phyllosomala caught Distance N W offshore Time Depth
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • On a Hitherto Unknown Phyllosoma Larval Species of the Slipper Lobster Scyllarus (Decapoda, Scyllaridae) in the Hawaiian Archipelago L
    Pacific Science (1977), vol. 31, no. 2 © 1977 by The University Press of Hawaii. All rights reserved On a Hitherto Unknown Phyllosoma Larval Species of the Slipper Lobster Scyllarus (Decapoda, Scyllaridae) in the Hawaiian Archipelago l MARTIN W. JOHNSON 2 IN A PREVIOUS ANALYSIS of plankton from thorax has a short spine situated at the 140 scattered oceanographic stations in the base of each of legs 1-4 (Figure 1-2). Coxal Hawaiian area, mainly around Oahu Island, and subexopodal spines (Figure I-I, sp.) are six scyllarid larval species were found (John­ present and the exopods of legs I, 2, and 3 son 1971). Five ofthese species were assigned are provided with 21, 21, and 19 pairs of respectively to Parribacus antarcticus (Lund); swimming setae, respectively; pleopods and Scyllarides squamosus (H. Milne Edwards); uropods are bilobed buds (Figure 1-3). The Arctides regalis Holthuis; Scyllarus timidus eyestalks are 2.4 mm long and the first Holthuis; and Scyllarus modestus Holthuis. antennae are about equal in length to the These five species comprise all of the then slender second antennae (Figure 1-4). Only known adult slipper lobsters of the Hawaiian very rudimentary second maxillae and first area. The sixth larval species, a Scyllarus, maxillipeds are present and the second maxi1­ could not be identified specifically and lipeds bear no exopod buds (Figure 1-5). appears to represent an unknown adult species of that genus inhabiting the area. It is of interest to report here yet another unknown larva ofScyllarus that was probably Scyllarus sp. phyllosoma. Length 30.1 mm, produced in this relatively isolated oceanic final fully gilled stage (Figure 2-6).
    [Show full text]
  • Marine Invertebrate Diversity in Aristotle's Zoology
    Contributions to Zoology, 76 (2) 103-120 (2007) Marine invertebrate diversity in Aristotle’s zoology Eleni Voultsiadou1, Dimitris Vafi dis2 1 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR - 54124 Thessaloniki, Greece, [email protected]; 2 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Uni- versity of Thessaly, 38446 Nea Ionia, Magnesia, Greece, dvafi [email protected] Key words: Animals in antiquity, Greece, Aegean Sea Abstract Introduction The aim of this paper is to bring to light Aristotle’s knowledge Aristotle was the one who created the idea of a general of marine invertebrate diversity as this has been recorded in his scientifi c investigation of living things. Moreover he works 25 centuries ago, and set it against current knowledge. The created the science of biology and the philosophy of analysis of information derived from a thorough study of his biology, while his animal studies profoundly infl uenced zoological writings revealed 866 records related to animals cur- rently classifi ed as marine invertebrates. These records corre- the origins of modern biology (Lennox, 2001a). His sponded to 94 different animal names or descriptive phrases which biological writings, constituting over 25% of the surviv- were assigned to 85 current marine invertebrate taxa, mostly ing Aristotelian corpus, have happily been the subject (58%) at the species level. A detailed, annotated catalogue of all of an increasing amount of attention lately, since both marine anhaima (a = without, haima = blood) appearing in Ar- philosophers and biologists believe that they might help istotle’s zoological works was constructed and several older in the understanding of other important issues of his confusions were clarifi ed.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    National monitoring program for biodiversity and non-indigenous species in Egypt January 2016 1 TABLE OF CONTENTS page Acknowledgements 3 Preamble 4 Chapter 1: Introduction 8 Overview of Egypt Biodiversity 37 Chapter 2: Institutional and regulatory aspects 39 National Legislations 39 Regional and International conventions and agreements 46 Chapter 3: Scientific Aspects 48 Summary of Egyptian Marine Biodiversity Knowledge 48 The Current Situation in Egypt 56 Present state of Biodiversity knowledge 57 Chapter 4: Development of monitoring program 58 Introduction 58 Conclusions 103 Suggested Monitoring Program Suggested monitoring program for habitat mapping 104 Suggested marine MAMMALS monitoring program 109 Suggested Marine Turtles Monitoring Program 115 Suggested Monitoring Program for Seabirds 117 Suggested Non-Indigenous Species Monitoring Program 121 Chapter 5: Implementation / Operational Plan 128 Selected References 130 Annexes 141 2 AKNOWLEGEMENTS 3 Preamble The Ecosystem Approach (EcAp) is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way, as stated by the Convention of Biological Diversity. This process aims to achieve the Good Environmental Status (GES) through the elaborated 11 Ecological Objectives and their respective common indicators. Since 2008, Contracting Parties to the Barcelona Convention have adopted the EcAp and agreed on a roadmap for its implementation. First phases of the EcAp process led to the accomplishment of 5 steps of the scheduled 7-steps process such as: 1) Definition of an Ecological Vision for the Mediterranean; 2) Setting common Mediterranean strategic goals; 3) Identification of an important ecosystem properties and assessment of ecological status and pressures; 4) Development of a set of ecological objectives corresponding to the Vision and strategic goals; and 5) Derivation of operational objectives with indicators and target levels.
    [Show full text]
  • STATE of BIODIVERSITY in the MEDITERRANEAN (2-3 P
    UNEP(DEC)/MED WG.231/18 17 April 2003 ENGLISH MEDITERRANEAN ACTION PLAN Meeting of the MED POL National Coordinators Sangemini, Italy, 27 - 30 May 2003 STRATEGIC ACTION PROGRAMME GUIDELINES DEVELOPMENT OF ECOLOGICAL STATUS AND STRESS REDUCTION INDICATORS FOR THE MEDITERRANEAN REGION In cooperation with UNEP Athens, 2003 TABLE OF CONTENTS Pages 1. INTRODUCTION ......................................................................................................... 1 2. AIMS OF THE REPORT .............................................................................................. 2 3. STATE OF BIODIVERSITY IN THE MEDITERRANEAN............................................. 2 Species Diversity................................................................................................................. 2 Ecosystems/Communities .................................................................................................. 3 Pelagic ............................................................................................................................... 3 Benthic ............................................................................................................................... 4 4. ECOSYSTEM CHANGES DUE TO ANTHROPOGENIC IMPACT............................... 6 Microbial contamination...................................................................................................... 6 Industrial pollution .............................................................................................................. 6 Oil
    [Show full text]
  • Montenegro and Marine Protected Areas
    MONTENEGRO AND MARINE PROTECTED AREAS LEGAL AND INSTITUTIONAL FRAMEWORK ASSESSMENT FOR CONSERVATION OF COASTAL AND MARINE BIODIVERSITY Regional Activity Centre AND THE ESTABLISHMENT OF MPAS for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - TUNISIA Tel. : +216 71 206 649 / 485 / 765 Fax : +216 71 206 490 e-mail : [email protected] www.rac-spa.org Montenegro and Marine Protected Areas Legal and institutional framework assessment for conservation of coastal and marine biodiversity and the establishment of MPAs 2014 The present document was prepared by: The designation of geographical entities in this UNEP/MAP – United Nations Environment Programme / Mediterranean Action Plan book, and the presentation of the material, do not RAC/SPA – Regional Activity Centre for Specially Protected Areas imply the expression of any opinion whatsoever Regional Activity Centre for Specially Protected Areas (RAC/SPA) on the part of UNEP/MAP-RAC/SPA, IUCN, or the Boulevard du Leader Yasser Arafat MAVA Foundation concerning the legal status of B.P. 337, 1080 Tunis Cedex, Tunisia any country, territory, or area, or of its authorities, Tel: +216 71 206 649 / 71 206 485 / 71 206 765 or concerning the delimitation of its frontiers or Fax: +216 71 206 490 boundaries. www.rac-spa.org The views expressed in this publication do not And necessarily reflect those of UNEP/MAP-RAC/SPA, IUCN, or the MAVA Foundation. IUCN-Med: International Union for Conservation of Nature Reproduction of this publication for educational IUCN Centre for Mediterranean Cooperation or other non-commercial purposes is authorized C/ Marie Curie 22 without prior written permission from the copyright 29590 Campanillas, Malaga, Spain holder provided the source is fully acknowledged.
    [Show full text]
  • Reproductive Strategies Under Different Environmental Conditions: Total Abstract Output Vs Investment Per Egg in the Slipper Lobster Scyllarus Arctus
    Journal of the Marine Reproductive strategies under different Biological Association of the United Kingdom environmental conditions: total output vs investment per egg in the slipper lobster cambridge.org/mbi Scyllarus arctus L. Fernández1 , C. García-Soler2 and I. Alborés1 Original Article 1Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira, 15071 A Coruña, 2 Cite this article: Fernández L, García-Soler C, Spain and Aquarium Finisterrae, Paseo Alcalde Francisco Vázquez, 15002 A Coruña, Spain Alborés I (2021). Reproductive strategies under different environmental conditions: total Abstract output vs investment per egg in the slipper lobster Scyllarus arctus. Journal of the Marine The slipper lobster Scyllarus arctus is an important fishery resource in Galicia (NW Iberian Biological Association of the United Kingdom Peninsula), with a large reduction of its populations in recent decades in the North-east – 101, 131 139. https://doi.org/10.1017/ Atlantic and Mediterranean, but only limited information on its reproduction. This study pro- S0025315421000035 vides an analysis of the reproductive potential of this scyllarid during two breeding cycles ′ ′ Received: 18 July 2020 (2008 and 2009) in the NE Atlantic (43°20 N 8°50 W). We studied several reproductive traits Revised: 5 January 2021 (fecundity, brood weight, egg weight and volume) in broods with eggs both in an early and Accepted: 7 January 2021 late embryonic stage, in relation to female size and temporal variations. Total output (fecund- First published online: 8 February 2021 ity and weight) and egg weight were closely linked to maternal size, and this relationship Key words: remained in broods with late-stage eggs.
    [Show full text]
  • Western Mediterranean): Taxonomy and Ecology
    DOCTORAL THESIS 2015 DECAPOD CRUSTACEAN LARVAE INHABITING OFFSHORE BALEARIC SEA WATERS (WESTERN MEDITERRANEAN): TAXONOMY AND ECOLOGY Asvin Pérez Torres DOCTORAL THESIS 2015 Doctoral Programme of Marine Ecology DECAPOD CRUSTACEAN LARVAE INHABITING OFFSHORE BALEARIC SEA WATERS (WESTERN MEDITERRANEAN): TAXONOMY AND ECOLOGY Asvin Pérez Torres Director:Francisco Alemany Director:Enric Massutí Directora:Patricia Reglero Tutora:Nona Sheila Agawin Doctor by the Universitat de les Illes Balears List of manuscripts Lead author's works that nurtured this thesis as a compendium of articles, which have been possible by the efforts of all my co-authors, are the following: • Torres AP, Dos Santos A, Alemany F and Massutí E - 2013. Larval stages of crustacean key species of interest for conservation and fishing exploitation in the western Mediterranean. Scientia Marina, 77 – 1, pp. 149 - 160. doi: 10.3989/scimar.03749.26D. (Chapter 2) JCR index in “Marine & Freshwater Biology”: Q3 • Torres AP, Palero F, Dos Santos A, Abelló P, Blanco E, Bone A and Guerao G - 2014. Larval stages of the deep-sea lobster Polycheles typhlops (Decapoda, Polychelida) identified by DNA analysis: morphology, systematic, distribution and ecology. Helgoland Marine Research, 68, pp. 379 -397. DOI 10.1007/s10152-014-0397-0 (Chapter 3) JCR index in “Marine & Freshwater Biology”: Q3 • Torres AP, Dos Santos A, Cuesta J A, Carbonell A, Massutí E, Alemany F and Reglero P - 2012. First record of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Palaemonidae) in the Mediterranean Sea. Mediterranean Marine Science, 13 (2): pp. 278 - 282. DOI: 10.12681/mms.309 (Chapter 4) JCR index in “Marine & Freshwater Biology”: Q2 • Torres AP, Dos Santos A, Balbín R, Alemany F, Massutí E and Reglero P – 2014.
    [Show full text]
  • Molecular Cloning, Structure and Phylogenetic Analysis of a Hemocyanin Subunit from the Black Sea Crustacean Eriphia Verrucosa (Crustacea, Malacostraca)
    G C A T T A C G G C A T genes Article Molecular Cloning, Structure and Phylogenetic Analysis of a Hemocyanin Subunit from the Black Sea Crustacean Eriphia verrucosa (Crustacea, Malacostraca) Elena Todorovska 1 , Martin Ivanov 1, Mariana Radkova 1, Alexandar Dolashki 2 and Pavlina Dolashka 2,* 1 AgroBioInstitute, Agricultural Academy, 8 Dragan Tsankov, 1164 Sofia, Bulgaria; [email protected] (E.T.); [email protected] (M.I.); [email protected] (M.R.) 2 Institute of Organic Chemistry with Centre of Phytochemistry, BAS, Block 9 “Akademik Bonchev” Street, 1113 Sofia, Bulgaria; [email protected] * Correspondence: [email protected] Abstract: Hemocyanins are copper-binding proteins that play a crucial role in the physiological processes in crustaceans. In this study, the cDNA encoding hemocyanin subunit 5 from the Black sea crab Eriphia verrucosa (EvHc5) was cloned using EST analysis, RT-PCR and rapid amplification of the cDNA ends (RACE) approach. The full-length cDNA of EvHc5 was 2254 bp, consisting of a 50 and 30 untranslated regions and an open reading frame of 2022 bp, encoding a protein consisting of 674 amino acid residues. The protein has an N-terminal signal peptide of 14 amino acids as is expected for proteins synthesized in hepatopancreas tubule cells and secreted into the hemolymph. The 3D model showed the presence of three functional domains and six conserved histidine residues that participate in the formation of the copper active site in Domain 2. The EvHc5 is O-glycosylated and the glycan is exposed on the surface of the subunit similar to Panulirus interruptus.
    [Show full text]
  • Ultraviolet Filters in Stomatopod Crustaceans: Diversity, Ecology and Evolution Michael J
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2055-2066 doi:10.1242/jeb.122036 RESEARCH ARTICLE Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution Michael J. Bok*,§, Megan L. Porter‡ and Thomas W. Cronin ABSTRACT 1988; Marshall et al., 1991a) and at least five receptors sensitive to Stomatopod crustaceans employ unique ultraviolet (UV) optical filters various spectral ranges of ultraviolet (UV) light (Kleinlogel and in order to tune the spectral sensitivities of their UV-sensitive Marshall, 2009; Marshall and Oberwinkler, 1999). Underlying photoreceptors. In the stomatopod species Neogonodactylus oerstedii, these diverse visual sensitivities is an array of optical and retinal we previously found four filter types, produced by five distinct structural modifications (Horridge, 1978; Marshall et al., 1991a; mycosporine-like amino acid pigments in the crystalline cones of their Schiff et al., 1986), the expression of a great number of opsins specialized midband ommatidial facets. This UV-spectral tuning array resulting in the most visual pigments yet described in a single eye produces receptors with at least six distinct spectral sensitivities, (Cronin and Marshall, 1989b; Cronin et al., 1993; Porter et al., 2009, despite expressing only two visual pigments. Here, we present a 2013), and the tuning of spectral sensitivity via serial filtering broad survey of these UV filters across the stomatopod order, effects due to more distal visual pigments as well as photostable examining their spectral absorption properties in 21 species from colored pigments (Cronin and Marshall, 1989a; Cronin et al., seven families in four superfamilies. We found that UV filters are 1994a,b, 2014; Marshall, 1988; Marshall et al., 1991b; Porter et al., present in three of the four superfamilies, and evolutionary character 2010).
    [Show full text]
  • Phylogenetic Systematics of the Reptantian Decapoda (Crustacea, Malacostraca)
    Zoological Journal of the Linnean Society (1995), 113: 289–328. With 21 figures Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca) GERHARD SCHOLTZ AND STEFAN RICHTER Freie Universita¨t Berlin, Institut fu¨r Zoologie, Ko¨nigin-Luise-Str. 1-3, D-14195 Berlin, Germany Received June 1993; accepted for publication January 1994 Although the biology of the reptantian Decapoda has been much studied, the last comprehensive review of reptantian systematics was published more than 80 years ago. We have used cladistic methods to reconstruct the phylogenetic system of the reptantian Decapoda. We can show that the Reptantia represent a monophyletic taxon. The classical groups, the ‘Palinura’, ‘Astacura’ and ‘Anomura’ are paraphyletic assemblages. The Polychelida is the sister-group of all other reptantians. The Astacida is not closely related to the Homarida, but is part of a large monophyletic taxon which also includes the Thalassinida, Anomala and Brachyura. The Anomala and Brachyura are sister-groups and the Thalassinida is the sister-group of both of them. Based on our reconstruction of the sister-group relationships within the Reptantia, we discuss alternative hypotheses of reptantian interrelationships, the systematic position of the Reptantia within the decapods, and draw some conclusions concerning the habits and appearance of the reptantian stem species. ADDITIONAL KEY WORDS:—Palinura – Astacura – Anomura – Brachyura – monophyletic – paraphyletic – cladistics. CONTENTS Introduction . 289 Material and methods . 290 Techniques and animals . 290 Outgroup comparison . 291 Taxon names and classification . 292 Results . 292 The phylogenetic system of the reptantian Decapoda . 292 Characters and taxa . 293 Conclusions . 317 ‘Palinura’ is not a monophyletic taxon . 317 ‘Astacura’ and the unresolved relationships of the Astacida .
    [Show full text]