Geochemicaljourn Al,Vol.28,Pp.263To287,1994 O Xyg

Total Page:16

File Type:pdf, Size:1020Kb

Geochemicaljourn Al,Vol.28,Pp.263To287,1994 O Xyg GeochemicalJourn al,Vol.28,pp.263to287,1994 O x y g en, h y d ro ge n, a n d s ulfu r isoto p e syste m atics o f th e crater la k e syste m o f P o ~s V olc a n o, C osta R ic a G ARY L. R OW E, Jr.* Departm entofG eosciences, The Pennsylvania State University, University Park, PA 16802,U.S.A. (Received M ay 6,1993,・Accepted April 24, 1994) O xygen, hydrogen, and sulfurisotope data for fluids and m inerals associated with the craterlake of po~s Volcano, Costa Rica, are interp reted in the context ofthe chem ical and hydrologic stru cture ofthe volcano.Oxygen and hydrogenisotope dataw ere obtained forrain,spring,and riverw ater,Iow-tem perature fum arole condensates, and acid brines collected from the hotcraterlake before its disappearance in A pril 1989. Flank river and spring w aters whose solute com positions have been m odified by volcanic and hydrotherm al activity have, with one exception,isotopic com positions similar to local m eteoric water. Acid chloride-sulfate brines ofthe sum m it craterlake are extrem ely enriched in 180 with respectto local m eteoric water;in the m ost enriched brines 180 shifts are greaterthan 200100.The 180 shiftisrelatedto a kinetic isotope effectassociated with theintense evaporation atthe surface ofthelake. These sam e brines exhibit only m inim alshiftsin theirD/H ratios. The apparentlack ofdeuterium fractionation in the brines is attributed to an increase in the flux ofisotopically light steam into the craterlake and/or a decrease in the deute rium fractionation factor for evaporation that occurs atthe surface ofthe lake. The decrease in deuterium fractionation is correlated with large increases in lake-brine acidity and dissolved solids con- centration thatpreceded the disappearance ofthe lake. Sulfurisotope data are presented for H2S and S02 gas collected from low tem perature fum aroles;dis- solved sulfatein spring,river, and craterlake w aters;and native sulfur and gypsum found in the acid lake and active crater area. As02-H2s forlow tem perature gasesis approxim ately 240100indicating an equilibra- tiontem peratureof165'C. As04-H2S forlow temperatu re H2S andlake brine sulfateisapproxim ately 230100, allindicating subsurface equilibration occured at 265'C. The H2S and native sulfur are both highly de- pleted in 34S (834S = -8to -1Ioloo). 634S valuesof34S-depleted H2S and 34S-enriched sulfate in lake brine are produced by disproportionation ofS02 released by the shallow m agm a body.N ative sulfuris form ed bythe oxidation of34S-depleted H2S by non-sulfu r-bearing oxidantssuch as atm ospheric oxygen and ferric iron. M ass-balance calculations indicate that sulfitolysis of polythionic acids could also result in the deposition of significant quantities ofnative sulfur.Im plications ofthe isotopic com position of present- day fluids observ ed at Po~s V olcano with respectto the isotope system atics of acid-sulfate ore deposits are considered. the isotope system atics of crater lakes and their INTRODUCTION associated hydrotherm al system s is driven by Crater lakes hosted by active volcanos repre- econom ic, scientific, and hazard m itigation con- sent unique geochem icalenvironm ents. Such lakes cern s. For instance, stable isotope data are com - are the s urface expression ofhigh-level geotherm al m only used to evaluate the econom ic potential of system s and act as condensers for fluids and gases geotherm al system s associated with active volca- re leased by sh allow m agm a bodies (Giggenbach, nos (e.g., Traineau et al., 1989; Giggenbach and 1974; Bran tley et al., 1987, 1993). R esearch into C or ales, 1992). G eochem ical processes that oc- *Presentaddress' U.S. GeologicalSurvey. Water Resources Division,975 West ThirdAve.,Columbus, OH 43212, U.S.A. 263 264 G. L. Rowe, Jr. cur in shallow, volcano-hosted hydrotherm al sys- 1). po~s lavas are calc-alkaline basalts and tem s are considered to be analogousto those that andesites; deposits exposed in the sum m it area and occur during the form ation of epitherm al acid active crater are com posed of approxim ately equal sulfate precio us m etal deposits(H ayba et al.,1985; volum es oflava and w eathered pyroclastic m ate- Stoffgren, 1987; Rye etal., 199 2; H edenquist and rial (Prosser and C ar, 1987). Eruptive activity in A oki, 1991; Rye, 1993; H edenqu ist et al., 1993). historic tim es has been confined to the active crater The role of acid fluids generated by crater-lak e and consists of continuous low -level degassing, hydrotherm al system s in the form ation of acid frequent geyser-like phreatic eruptions in the cra- sulfate ore deposits has also received attention ter lake, and rare phreato-m agm atic eruptions (R ow e, 1991; C hristenson and W ood, 1993). Fi- (Casert ano etal., 1983). nally, tem poral variations in the sul fur isotope A sm all but vigorous m agm atic-hydrotherm al com p osition of w ater collected from Y ugam a system at the sum m it of Po~s V olcano is charac- crater lake have been used to assess recent v olca- terized by (1) a hot, acid crater lake (300 m eters nic activity at K usatsu-Shirane V olcano, Japan in diam eter) w hose level, tem perature, and w ater (O hsaw a et al., 1993). chem istry vary sharp ly in response to changes in Th e purp ose ofthis paper is to sum m arize and rainfall,therm alpower output, and sum mitseismic interp ret oxygen, hydrogen, and sulfurisotope data activity (Brow n et al., 1989; R ow e et al., 1992a, rece ntly obt ained a t Po~s V olcano in the context b), and (2)the rem nants ofa 30-m eter-high pyro- ofa chemical and hydrologic m odel developed for clastic cone form ed during the last phreato-m ag- the sum mitcraterlake and associated hydr otherm al m atic eru ption of Po~s in 1953-54 (C asertano et system (R ow e et al., 1992a, 1994). These data al., 1983). This cone, on the southern edge ofthe p rovide insight into the geochem ical and hydro- pit crater occupied by the lake,is the site ofsub- logic processes associated w ith the form ation and aerial fum arolic activity of variable tem perature circulation of acidic chloride-sulfate brines ofthe and intensity (Casert ano et al., 1983, 1987; R ow e crater lake. The isotope data also provide infor- et al., 1992a). The crater-lake brines are am ong m ation regarding the origin of the sulfuric acid the m ost acidic natural w aters ever sam pled; pH responsible for the extrem e acidity of the lake ofthe acid-chloride-sulfate brines is usually near brin e,the origin of native sulfurin t he craterlake zero (T able 1). and its sedim ents, and the origin of the diverse Previous studies of the crater lake system solute com positions ofriversthat drain the flanks (C asertano et al., 1987; R ow e et al., 1992a) indi- of Po~s V olcano. Finally, im plications ofthe re- cate that hydrotherm alcirculation is driven by the sults of this study w ith resp ect to the isotopic release of heat and volatiles from a pipe-like system atics of epit herm al ore deposits are briefly m agm a body w hose upper m argin lies approxi- discussed. m ately 500 m beneath the floor ofthe active cra- ter(R ym er and Brow n, 1987, 1989). H eattransfer Geochemica/ and hydrogeologic structure of Pods is by a heat-pipe m echanism in w hich condensed Volcano hydr otherm al steam and seeping lake brines are 'po~s V olcano,along with the adjacent volcanic revaporized near the chilled upper part of the centers of Platanar-Porvenir, B arva, and lrazti- m agm a body to supply heatto the overlyingliquid- Turrialba, is part of the Q uaternary C ordillera dom inated convection cell (H urst et al., 1991; C entral ofcentral Costa Rica(Fig.1). The sum m it R ow e et al., 1992a). R ecycling of lake brine and area ofPo~s consists ofthree nested calderas and condensed steam is a key feature ofthe craterlake an active crater bordered by tw o com posite cones: hydrotherm al system : volatile fluxes calculated V on Frantzius to the north (E = 2639 m) and from pow er outputestim atesindicatethatlessthan B otos, the site of a 400 m eter diam eter cold 1Oolo ofthe heat su pplied to th e crater lake is de- freshw ater lake,to the south (E = 2708 m ) (Fig. rived by condensation ofm agm atic steam degassed O,H and S isotope system atics of Poas V olcano 265 84'20' 84'16' 84'12' ~ ~¥ 1¥~00;// 1o'16' ,., 「r l ~ ~'d20'~ ¥ ' ¥o /i¥ ' b/: ~ ¥~( ~~ CERR r~ ¥b~i~) ' (/e '4 ~;' l: ( / ~ ~i ~Cl ~ l E'V / l ' {, ~ ~ 3~t, f~le I ¥ ~ :~f ' '~ '~ ¥ /./6;~] ¥,¥ 10'12' ~~ )!~.~;~2i¥ 4~i)~_~:~~ "~ "'A!/~:7n::~~ TZ~.~,1/;i1e~/f:~~{2 " / /~ ¥ ' / l 「:l i /~ ' V ))~ <~ ~ / ( ( ' ( ~ ' 'IA~Inv ¥ / 5~ ~' .~1 ¥ - 9 T~ l l ' f ' ~ ~" VOpLCA (B~O ]NOES'j;~ ~: ( / j ~ IU~ / <:~~~~' ~.¥ . ~ t Ei /1 //l/ l ¥ prl 10'08' '/ // ' 7 2000 / OO l iI '>' *' *. /' .BAR~ *~ )// ' ~~-~:1"- + c! 11' ' / . , ~ p;oasIo 「 ' ' / 「' ' ' l'2Qb ~~ // COSTA' / l l'/ / /' RICAf (C'J . '. l l ' . pacific ocea" , ! ~ 10004' 85' 84" 83' o 2 4, KILO METERS EXPLANATIO N I l l RIO AGRIO W ATERSHED TYPE OF WATER SITES--nvmberedsites have com positionaldata availabie O Acidchloride-sulfate l Neutralsulfate El Acidsulfate C) Neutralbicarbo nate - 2000 - ELEVATION--in m etersabo vesealevel.
Recommended publications
  • Information to Users
    INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quédlty of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hemd comer and continu­ ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. * 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white stcmdard 35mm slide format.* *For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department. IVBcrofilnis lateniai^oiial 8612390 Lee, Jong-Kwon STRESS CORROSION CRACKING AND PITTING OF SENSITIZED TYPE 304 STAINLESS STEEL IN CHLORIDE SOLUTIONS CONTAINING SULFUR SPECIES AT TEMPERATURES FROM 50 TO 200 DEGREES C The Ohio State University Ph.D.
    [Show full text]
  • P – Block Elements SYJC
    P – Block Elements Introduction The p-block elements are placed in groups 13 – 18 . The general electronic configuration is ns 2 np1 – 6. The groups included in the syllabus are 15, 16, 17 and 18. Group 15 Elements Nitrogen family: configuration is ns2np3. The elements of group 15 – nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) bismuth (Bi) All Group 15 Elements tend to follow the general periodic trends: Periodic properties Trends Electronegativity:(the atom's ability of Decreases down the group attracting electrons) Ionization Enthalpy (the amount of decreases energy required to remove an electron from the atom in it's gaseous phase) Atomic Radii (the radius of the atom) increases Electron Affinity (ability of the atom to decreases accept an electron) Melting Point (amount of energy increases going down the required to break bonds to change a group solid phase substance to a liquid phase) Boiling Point (amount of energy increases going down the required to break bonds to change a group liquid phase substance to a gas) Chemical properties Action of air;(high temp arc) N2 + O2 2NO Action oxidizing agents: P4 +20HNO3 4H3PO4 + 20 NO2+4 H20 As4 + 20 HNO3 4H3AsO4 + 20 NO2+4 H20 Action of hot conc H2SO4 P4 +10 H2SO4 4H3PO4 + 10 SO2+4 H20 As4 +10 H2SO4 4H3AsO4 + 4 Sb + 6 H2SO4 Sb2(SO4)3 + 3 Hydrides All form hydrides with formula EH3 ( E = N, P, As, Sb , Bi) oxidation state = – 3 Hydrogen bonding in NH3 The stability of hydrides decrease down the group due to decrease in bond Hydrides comparison Anomalous behaviour of
    [Show full text]
  • Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry Topics in Safety, Risk, Reliability and Quality
    Topics in Safety, Risk, Reliability and Quality Alec Groysman Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry Topics in Safety, Risk, Reliability and Quality Volume 32 Series editor Adrian V. Gheorghe, Old Dominion University, Norfolk, VA, USA Editorial Advisory Board Hirokazu Tatano, Kyoto University, Kyoto, Japan Enrico Zio, Ecole Centrale Paris, France and Politecnico di Milano, Milan, Italy Andres Sousa-Poza, Old Dominion University, Norfolk, VA, USA More information about this series at http://www.springer.com/series/6653 Alec Groysman Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry 123 Alec Groysman The Israeli Society of Chemical Engineers and Chemists Association of Engineers and Architects in Israel Tel Aviv Israel ISSN 1566-0443 ISSN 2215-0285 (electronic) Topics in Safety, Risk, Reliability and Quality ISBN 978-3-319-45254-8 ISBN 978-3-319-45256-2 (eBook) DOI 10.1007/978-3-319-45256-2 Library of Congress Control Number: 2016948810 © Springer International Publishing Switzerland 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • On the Reactivity of Nanoparticulate Elemental Sulfur
    ON THE REACTIVITY OF NANOPARTICULATE ELEMENTAL SULFUR: EXPERIMENTATION AND FIELD OBSERVATIONS Fotios Christos Kafantaris Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University December 2017 ii Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ___________________________ Gregory K. Druschel, PhD, Chair ___________________________ Kevin Mandernack, PhD ___________________________ William P. Gilhooly III, PhD ___________________________ Gabriel Filippelli, PhD ___________________________ Steven E. Lacey, PhD October 2, 2017 ___________________________ Brandy M. Toner, PhD iii © 2017 Fotios Christos Kafantaris iv DEDICATION I would like to dedicate this work to three women. The first one is the Most Holy Theotokos and Ever-Virgin Mary, the most precious individual the human race has and will ever have, the Bridge from earth to Heaven and the Gate to Paradise. Through Her intercessions to the Holy Trinity I am still alive and safe. The second woman is my mother, Eleni, who is the angel-on-earth that protects, nourishes, teaches, provides, inspires and guides me in life. Words would be poor to attempt to describe her and her virtues in an accurate manner. My mother is the main contributor of what I have become so far in life. The third woman is my σύζυγος (spouse) Diana, who has given me life, as well as meaning for life. Diana is the main contributor of what I will hopefully do in life from this point onward, and through her help I will hopefully manage to be with the other two forever.
    [Show full text]
  • J. Rohonczy: Inorganic Chemistry I
    Dr. János Rohonczy Lecture Notes Eötvös Loránd University, Budapest Faculty of Sciences Dr. János Rohonczy INORGANIC CHEMISTRY I. Lecture Notes Eötvös Loránd University Faculty of Sciences BUDAPEST 2017. János Rohonczy: Inorganic Chemistry I. Lecture Notes. Copyright © 2017 Dr. János Rohonczy, Eötvös Loránd University, Budapest, Faculty of Sciences All Right are Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photographical, photocopying, recording or otherwise, without permission in writing form the publisher. This book is written utilized the lecture notes of the Inorganic Chemistry lectures of the author at the Department of Inorganic Chemistry of Eötvös Loránd University, Budapest. Revised, and the fullerene and boron cluster topics remarked by Dr. Béla Csákvári professor emeritus. First edition 2017 Edited and cover page made by Dr. János Rohonczy Publisher: Eötvös Loránd University, Faculty of Sciences ISBN: 978-963-284-853-2 DOI: 10.21862/ 3 Table of Contents Introduction 7 1. Hydrogen 8 1.1. Hydrogen compounds 9 2. Halogens: F, Cl, Br, I, At 10 2.1. Hydrogen halides 13 2.2. Interhalogens 14 2.3. Polyhalogen and interhalogen ions, organic derivatives 16 3. (16th column) O, S, Se, Te, Po 17 3.1. Oxygen (O) 17 3.1.1. Oxygen compounds 19 3.1.2. Halogen oxides and oxygen halides 21 3.1.3. Halogen oxoacids and their salts 24 3.1.4. Halogen oxofluorides and fluorinated oxoacids 28 3.2. Sulfur(S) 29 3.2.1. Sulfur containing compounds 31 3.2.2.
    [Show full text]
  • The Role of Stainless Steels in Petroleum Refining
    THE ROLE OF STAINLESS STEELS IN PETROLEUM REFINING 1 TABLE OF CONTENTS INTRODUCTION Throughout the booklet these Petroleum refining today is unusually materials will be referred to as indicated Introduction ................................. 3 sophisticated in comparison to the above, without distinguishing in each Petroleum Refining ....................... 4 single shell stills of the 1800's, and instance into which category they Applications for Stainless Steels ... 6 the industry shows every indication of belong. Crude Distillation..................... 6 becoming even more complex. Every effort has been made to insure Fluid Catalytic Cracking .......... 9 Chemical and mechanical engineering that the applications described in this Delayed Coking ................... 13 advances are being sought to increase booklet reflect general industry practice Hydrotreating ...................... 16 product yields and improve plant and that the data are technically correct. Catalytic Reforming ............. 20 operating reliability. Methods are being However, neither the Committee of Hydrocracking ..................... 21 developed to remove potential Stainless Steel Producers nor the Hydrogen Plant .................... 23 pollutants from processes as well as companies represented on the Gas Plant ............................ 26 products. Changing national interests Committee warrant the accuracy of these Amine Plant.......................... 28 among oil-producing countries are data. Sulfuric Acid Alkylation ........ 30 affecting sources of raw crude
    [Show full text]
  • Hydrochloric Acid in Refinery Units
    Appendices Reading makes a person knowledgeable, conversation - resourceful, and the habit of recording – accurate. Francis Bacon (1561–1626), an English philosopher. Twelve appendices contain diverse information about physicochemical properties of crude oils and petroleum products; physicochemical properties of sulfur com- pounds, acids, alkalis, and hydrogen used in refinery units; chemical composition of alloys; metallographic replication; fouling mechanism; chemical cleaning from fouling; recommended procedure for passivation of cooling water systems; and boil-out procedure (chemical cleaning and passivation of inner surfaces of boiler and steam pipelines). © Springer International Publishing Switzerland 2017 289 A. Groysman, Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry, Topics in Safety, Risk, Reliability and Quality 32, DOI 10.1007/978-3-319-45256-2 Appendix A Schematic of a Typical Oil Refinery Sulfur Claus plant Fuel gas Gas plant LPG Deethanizer Blending Liquefied Depropanizer n-Butane petroleum Alkyla gas (LPG) Alkylation feed Catalytic te Light Alkylation Gasoline Naphtha Atmo- Catalytic Blending Iso-naphtha Automotive spheric Isomerization Heavy gasoline Desalted Distillation Platformate Crude oil naphtha Crude oil Hydrotreating/ Catalytic Cat cracked Desalting Desulfurization Reforming Kerosene naphtha Middle Jet fuels distillate SR kerosene Crude Oil HDS mid Storage Atmospheric Hydrotreating/ distillate residue Deslufurization Distillate Distillate fuel oils SR mid Blending distillate Diesel fuel oils Loading Cat cracked Crude distillate Catalytic Vacuum Heavy vacuum distillate Cracking Distillation Cat cracked clarified oil Heavy fuel oils Residual (burner oils) Coker/Visbreaker Distillate (Gas oil) Treating Vacuum And residue Green Coke Blending Bitumen Visbreaking Thermally Coke Drum cracked residue Bitumen Schematic of a Typical Oil Refinery © Springer International Publishing Switzerland 2017 291 A.
    [Show full text]
  • Heat Treatment Method for Reducing Polythionic Acid Stress Corrosion Cracking
    Europaisches Patentamt 0 398 761 European Patent Office © Publication number: A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 90305445.0 © int. a* C22F 1/10 © Date of filing: 18.05.90 © Priority: 19.05.89 US 354310 © Applicant: INCO ALLOYS INTERNATIONAL, INC. @ Date of publication of application: 3200 Riverside Drive 22.11.90 Bulletin 90/47 Huntington West Virginia 25702(US) © Designated Contracting States: © Inventor: Crum, James Roy AT BE DE FR GB IT SE 157 Cheyenne Trail Ona, West Virginia 25545(US) Inventor: Lipscomb, William Grant 124 Brady Drive Barboursville, West Virginia 25504(US) Inventor: Ganesan, Pasupathy 6 Partridge Court Huntington, West Virginia 25705(US) © Representative: Hedley, Nicholas James Matthew et a I TZ Gold & Company 9 Staple Inn London WC1V 7QH(GB) © Heat treatment method for reducing polythionic acid stress corrosion cracking. © A heat treatment of alloy 617 generally including 732° C-927° C (1350° F-1700" F) for about one hour. The resultant discontinuous carbide network in the grain boundaries inhibits stress corrosion crack growth in polythionic acid environments. Alloy 617 generally comprises 20-24% Cr, 9.5-20% Co, 7-12% Mo, 0.8-1.5 Al, and less than 0.15% carbon, the balance being iron. to 00 CO Q_ LU Xerox Copy Centre EP 0 398 761 A1 HEAT TREATMENT METHOD FOR REDUCING POLYTHIONIC ACID STRESS CORROSION CRACKING TECHNICAL FIELD The instant invention relates to heat treatment techniques in general and more particularly to method for 5 reducing polythionic acid (H2SxOs) stress corrosion cracking in a nickel-base alloy. BACKGROUND ART TO INCONEL® alloy 617 (trademark of assignee) is a solid solution nickel-chromium- cobalt-molybdenum alloy exhibiting excellent high temperature strength and resistance to oxidizing and reducing environments.
    [Show full text]