ACTA ICHTHYOLOGICA ET PISCATORIA (2016) 46 (3): 211–224 DOI: 10.3750/AIP2016.46.3.05

DIET COMPOSITION OF RED , MACROPHTHALMA (ACTINOPTERY- GII: : CEPOLIDAE), FROM THE AEGEAN SEA OF TURKEY

Tuncay Murat SEVER and Dilek İLHAN*

Ege University, Faculty of Fisheries, 35100, Bornova-İzmir, Turkey

Sever T.M., İlhan D. 2016. Diet composition of red bandfi sh, Cepola macrophthalma (: Perciformes: Cepolidae), from the Aegean Sea of Turkey. Acta Ichthyol. Piscat. 46 (3): 211–224. Background. The red bandfi sh, Cepola macrophthalma (Linnaeus, 1758), is a benthic fi sh usually not exceeding 450 cm in length. It occurs in the eastern Atlantic from the British Isles to the north of Senegal and is also common throughout the Mediterranean Sea. The red bandfi sh has no commercial value and is often represented in the discarded catch. The knowledge of the feeding ecology, of non-commercial as well as commercial species, is essential for implementing a multispecies approach to fi shery management. Studies on red bandfi sh feeding biology have been rather scarce and the majority of them lacked taxonomical approach. The presently reported study constitutes the fi rst report on the diet of Cepola macrophthalma from two bays on the Turkish coast. Material and methods. The study was based on the specimens of Cepola macrophthalma collected in İzmir Bay and Sığacık Bay from May 2005 to June 2006. The following basic parameters were calculated, based on the data collected during the analysis of red bandfi sh diet: relative number of food items in the gut content, frequency of occurrence, and relative weight of total gut content. Principal food items were determined using the index of relative importance (%IRI). The differences in the diet composition were tested for length groups and seasons by using the Bray–Curtis similarity index for both areas studied. Results. A total of 380 stomachs were examined in two bays. According to the analyses a total of 18 different prey species belonging to nine major systematic groups were found, i.e., Anthomedusae, Siphonophora, Polychaeta, Crustacea, Mollusca, Chaetognatha, Appendicularia, Thaliacea, and Actinopterygii. Concerning overall diet composition, crustaceans (especially copepods) were the most important prey in terms of %IRI, %N, %F, and %W in all seasons. In this study, a total of 80 taxa were found and identifi ed. According to the Bray–Curtis similarity index, the diet of the red bandfi sh was similar within all seasons for both areas. Conclusion. Stomach content analysis of red bandfi sh showed that it is a zooplanktophagous species. In addition to bottom species it feeds also on pelagic organisms. This fact indicates ontogenetically based food preferences of the species. Keywords: stomach content, feeding ecology, index of relative importance, zooplanktophage, İzmir Bay

INTRODUCTION Although biological aspects of the red bandfi sh have The red bandfi sh, Cepola macrophthalma (Linnaeus, been studied by several authors (Atkinson 1976, Martín 1758), is a zooplanktophagous benthic species found solitary and Sabatés 1991, Stergiou et al. 1992, 1996, Stergiou or in small groups at depths ranging from 10 to 450 m, with 1993, 1999, Stergiou and Papaconstantinou 1993, an “optimal depth window” between 60 and 120 m (Stergiou Vallisneri et al. 2006, Dulčić et al. 2008, Giacalone et al. 1993). It occurs in both temperate and subtropical waters 2010) in the Mediterranean Sea, a few of them are related and is known to be distributed in the eastern Atlantic from to the feeding of red bandfi sh. In the above-mentioned the British Isles to the north of Senegal (Bauchot 1987). It is studies prey items were generally not evaluated in relation also common throughout the Mediterranean Sea, as well as to the exact specifi c identity or the sampling season. in Turkish seas, but not in the Black Sea (Tortonese 1986, Even though the species is distributed in all Turkish seas Bauchot 1987). The red bandfi sh has economical importance except the Black Sea, the relevant studies were scarce and in Spain and Italy (Tortonese 1986, Bauchot 1987), but no there have only been two reports on its age and growth commercial value in Turkey (Düzbastılar 2014). properties (Kaya et al. 2001, Leblebici unpublished**).

* Correspondence: Assoc. Prof. Dr. Dilek İlhan, Ege Üniversitesi, Su Ürünleri Fakültesi, Bornova, İzmir, Türkiye, phone: +90 232 311 5341; fax: +90 232 388 3685, e-mail: (Dİ) [email protected], (TMS) [email protected]. ** Leblebici S. 2007. İzmir Körfezi’nde Yaşayan Kurdela Balığı, Cepola macrophthalma (Linnaeus, 1758) Türünün Biyolojik Özelliklerinin Araştırılması. [Investigations on the biological properties of red bandfi sh Cepola macrophthalma (Linnaeus, 1758) in İzmir Bay.] PhD Thesis. Ege University, Izmir, Turkey. [In Turkish.] 212 Sever and İlhan

The purpose of the presently reported study was to %IRI was computed in order to determine ratios of improve the knowledge on the feeding habits of the red food groups in the stomach to overall food groups. bandfi sh by analysing the qualitative and quantitative Subsequently, food items were grouped into categories of variations of the food items in the stomach contents preference using the method proposed by Morato-Gomes according to length groups and according to seasons in (unpublished). The categories were defi ned as follows: two bays of the Aegean Sea. IRI ≥ 30 × (0.15 × Σ%F) ...... main important prey (MIP) 30 × (0.15 × Σ%F) > IRI >10 × (0.05 × Σ%F) ...... MATERIAL AND METHODS ...... secondary prey (SP) Specimens of the red bandfi sh, Cepola macrophthalma IRI ≤ 10 × (0.05 × Σ%F) ...... occasional prey (OP) (total lengths ranging between 11 and 42.2 cm), were Seasonal differences in the diet composition for each collected by trawl in the İzmir Bay and Sığacık Bay, bay were determined by the Bray–Curtis similarity index, Turkish Aegean Sea from May 2005 to June 2006 (Fig. 1). using percentage numerical data (Washington 1984).

26°18' E 26°30' E 26°42' E 26°54' E 27°06' E 27°18' E 27°30' E 27°42' E 38°42' N RESULTS Foça BLACK SEA ø Z GREECE M Gediz øR A total of 380 stomachs of red bandfi sh, Cepola

B A Y TURKEY macrophthalma, were examined, including 180 from KARABURUN PENINSULA 38°30' N Uzun AEGEAN SEA Island İzmir Bay and 200 from Sığacık Bay. Only 7 stomachs i1 i2 (1.84%)—all of them collected in winter—were empty. ILDIR BAY Meles According to the analyses a total of 18 different prey 38°18' N species was found belonging to the nine major systematic

SÕ÷acÕk groups, Anthomedusae, Siphonophora, Polychaeta,

SIö ACIK BAY Crustacea, Mollusca, Chaetognatha, Appendicularia, 38°06' N Do÷anbey Thaliacea, and Actinopterygii. Pelagic copepods S1 S3 (Copepoda) were found to be most important prey group

S2 2 37°54' N AEGEAN SEA 101 (MIP) in the diet for all length groups and seasons in SCALE 1:570.000 each bay. Secondary prey groups (SP) were determined as decapod larvae, Appendicularia, Cladocera, Cirripedia Fig. 1. Research area and trawling locations larvae, Chaetognatha, and Bivalvia and it has been found that the sequence of their abundance changed by seasons The samples were collected seasonally by a research and length groups, whereas Siphonophora, Isopoda, vessel—R/V Egesüf (27 m length, 373 kw) in İzmir Mysidacea, Amphipoda, and Ostracoda were rare and Bay and by a commercial trawler—F/V Hapuloğlu (23 rated as occasional prey groups (OP) (Tables 1–5). m length, 410 kw) in Sığacık Bay. The sampling depth Considering the overall diet composition, crustaceans ranged between 45 and 70 m in İzmir Bay, and 145–296 (especially copepods) were the most important prey items m in Sığacık Bay. The fi sh stomachs were removed in terms of %IRI, %N, %F, and %W in all seasons and immediately after capture and were stored in 4% buffered length groups for each bay The remaining portion of formalin solution until the contents were analysed. In the the diet was shared by decapod larvae, Chaetognatha, laboratory the stomach contents were assigned to group- Appendicularia, Cladocera, Cirripedia larvae, Brachyura or species level with a SZX7 Olympus stereo microscope. larvae, Ostracoda, Mysidacea, Bivalvia, Anthomedusae, The identifi cation of digested copepods was done from Siphonophora, fi sh larvae and eggs, Thaliacea, Polychaeta, body part by following the methods of Rose (1933) and Amphipoda, Isopoda, and Gastropoda (Tables 1–4). In the Brodskii (1967). Once counted, the individuals of the presently reported study, covering all seasons, a total of 80 same species were weighed together (wet weight to the taxa were determined (Tables 1 and 2). There were 69 taxa nearest 0.0001 g) after excess moisture was removed by in the fi sh from İzmir Bay 69 and 67—from Sığacık Bay. blotting prey items on tissue paper. The diet of red bandfi sh for all seasons was made up For a quantitative description of the diet, Hyslop mainly of pelagic copepods for both bays as the main food (1980) equations were used; relative number of total item (Tables 1 and 2). The abundance of pelagic copepod gut content (%N), frequency of occurrence (%F), and species changed by seasons. In İzmir Bay, the dominant relative weight of total gut content (%W). Main food items food items were: Oncaea media, Corycaeus typicus, were determined using the index of relative importance Acartia clausi, and Clausocalanus arcuicornis (in spring); (IRI) (Pinkas et al.1971): Centropages typicus and Ditrichocorycaeus brehmi (in summer); Ditrichocorycaeus brehmi, Temora stylifera, IRI = %F × (%N + %W) Oncaea media, and Euterpina acutifrons (in autumn); and Temora stylifera, and Paracalanus parvus (in winter). The index of relative importance (IRI) was calculated In Sığacık Bay, the dominant food items were: Corycaeus and expressed as a percentage: typicus and Oncaea media (in spring); Centropages typicus, Ditrichocorycaeus brehmi, Corycaeus giesbrechti IRI% = 100 × IRI · (∑IRI)–1 (in summer); Ditrichocorycaeus brehmi, Paracalanus

* Morato-Gomes T. 1995. Ecologia alimentar de Serranus atricauda (Günther, 1874) dos Açores. „Licenciatura” Thesis, Universidade do Algarve, Faro, Portugal. Diet of Cepola macrophthalma from the Aegean Sea 213 .02 0.13 0.42 Table 1 Table IRI %IRI = 36) 7 116.70 0.71 n W%F Table continues on next page. Table % N 0.211.30 0.84 1.23 16.670.55 75.00 1.20 17.42 189.60 25.00 0.11 1.15 43.72 0.26 1.470.08 1.34 0.19 75.000.04 8.330.08 0.42 210.64 0.09 1.27 8.33 16.67 2.28 0.01 3.86 2.88 0.02 0.02 0.04 0.75 8.33 6.62 0.04 0.17 1.50 33.33 55.57 0.34 % 51 2.52 1.43 66.6723 0.50 263.13 1.05 1.59 50.00 77.63 0.47 2.80 12.72 54.20 91.67 6133.94 37.12 4 3.14 0.08 0.14 16.67 3.77 0.02 9.84 14.71 19.44 5.46 100.00 2489.49 15.07 9.47 0.14 0.08 1.12 16.67 20.06 0.12 IRI %IRI = 44) ( Winter n 00 621.99 4.55 0.55 0.88 66.67 94.85 0.57 W%F % N 0.430.03 2.43 2.99 27.27 9.09 78.05 0.57 27.51 0.20 4.74 4.52 100.00 1925.51 14.09 26.53 2.76 100.00 2929.36 17.73 % in the İzmir Bay sampling periods

13 87.89 71.00 100.00 15888.40 88.89 80.94 85.06 100.00 16600.20 87.32 , IRI %IRI = 48) Autumn ( n Cepola macrophthalma W%F % sh, N 0.03 2.85 8.33 0.37 0.00 1.45 4.67 58.33 85.99 0.94 0.60 3.05 63.64 232.29 1.70 0.80 0.60 50.00 70.10 0.03 0.73 8.33 0.28 0.00 0.03 2.99 9.09 27.51 0.20 0.42 0.99 25.00 35.23 0.21 % IRI %IRI = 48) Summer ( n Diet composition of red bandfi Spring ( W%F % N 0.11 1.38 16.67 24.71 0.36 0.11 3.29 8.33 28.29 0.41 0.69 1.75 33.33 81.50 1.18 0.48 1.03 25.00 37.69 0.54 0.75 1.540.91 33.33 4.29 16.67 76.033.19 1.10 1.71 86.55 50.00 1.25 2.25 245.21 2.91 3.54 100.00 22.60 12.89 100.00 226.34 2.47 2266.56 16.16 24.75 5.94 3.85 90.91 2.37 100. 200 5.171.86 3.32 25.00 1.71 25.00 212.06 3.07 89.33 1.29 0.07 4.60 0.53 18.18 2.37 63.64 84.83 184.61 0.62 1.35 0.13 0.17 0.04 0.71 16.67 25.00 2.79 21.83 0 5.860.16 2.35 33.33 0.100.37 8.33 273.47 1.74 25.00 3.95 2.18 0.59 0.03 52.78 2.35 0.76 41.67 0.83 2.66 25.17 33.33 0.27 1.99 28.08 3.25 0.31 81.82 2.26 429.1 2.41 81.82 381.85 1.600.59 2.131.54 25.00 1.64 16.67 1.780.43 25.00 93.170.27 0.72 37.04 1.35 3.51 16.67 0.93 83.15 0.54 2.45 8.33 1.20 58.33 19.17 0.21 0.28 347.82 0.13 9.94 5.03 41.67 0.14 0.12 0.94 8.66 16.67 0.09 0.10 2.06 2.47 0.02 27.27 0.03 3.39 70.09 0. 9.09 31.16 0. % spp. 11.29 4.45 16.67 262.27 3.79 0.46 6.17 45.45 301.39 2.21 1.81 1.00 41.6 . Prey Item avicornis sp. 0.05 0.52 8.33 4.79 0.07 fl sp Candacia simplex Candacia armata Candacia bispinosa Candacia Lucicutia Centropages kroyeri Centropages violaceus Centropages Candacia ethiopica Nannocalanus minor Diaixis pygmaea stylifera Temora Aetideus giesbrechti Euchaeta marina typicus Centropages Ctenocalanus vanus Clausocalanus arcuicornis Clausocalanus furcatus Clausocalanus Paracalanus parvus Calocalanus plumulosus Penilia avirostris OstracodaCopepodaCalanoidaAcartia clausi Calocalanus pavo 0.64 83.17 0.90 73.29 16.45 33.33 91.67 3.26 14342.22 75.00 84.91 51.24 83.64 1478.48 0.74 58.75 21.37 100.00 0.12 11.06 14239.79 0.36 5.52 79. 100.00 25 1109.12 12.11 1 3.01 0.03 0.07 1.00 18.18 1 SiphonophoraAnthomedusaePolychaetaCrustacea Cladocera Podon intermedius 0.37 3.14 1.30 1.23 25.00 66.67 41.91 291.53 0.61 4.21 0.03 0.75 8.33 0.28 0.00 Lucicutia Isias clavipes Corycaeus clausi Labidocera wollastoni abdominalis Pleuromamma gracilis Pleuromamma 214 Sever and İlhan .21 .14 0.06 IRI %IRI = 36) n 8.33 7.28 0.04 3 75.00 127.26 0.77 .26 50.00 346.48 2.10 W%F % N 0.130.04 0.85 0.31 16.67 8.33 16.22 0.10 2.97 0.02 0.080.13 0.30 0.04 8.330.04 25.00 0.47 3.17 8.33 4.19 0.02 0.03 4.30 0.03 0.08 0.28 8.33 3.02 0.02 % 09 0.55 0.61 8.33 9.63 0.06 .30 0.25 0.22 25.00.94 11.78 1.01 0.07 0.78 83.33 149.14 0.90 0.37 0.24 0.71 0.85 58.33 91.06 0.55 7 0.10 0.13 0.63 25.00 18.85 0.11 0150 0.18 5.00 0.55 0.63 58.33 68.82 0.42 .45 4.24 3.11 0.61 100.00 371.70 2.25 8.60 3.36 2.02 0.60 100.00 261.36 1.58 IRI %IRI = 44) ( Winter n 00 3087.96 22.60 2.94 0.92 91.67 354.12 2.12 .92 27.27 32.44 0.24 1.39 1.23 66.67 174.53 1.06 W%F 0.60 81.82 576.11 4.22 0.08 0.14 16.67 3.77 0.02 % N 0.96 0.68 81.82 134.62 0.99 0.21 0.84 25.00 26.14 0.16 0.03 3.29 9.09 30.25 0.22 1.00 1.65 18.18 48.05 0.35 0.70 3.09 72.73 275.63 2.02 0.13 0.91 16.67 17.31 0.10 % 60 2.82 3.45 81.82 513.46 3.76 9.91 6.25 100.00 1615.91 9.78 IRI %IRI = 48) Autumn ( n W%F % N % IRI %IRI = 48) Summer ( n Spring ( W%F % N 5.381.76 2.51 50.00 2.26 41.67 394.21 167.380.69 5.701.22 2.42 1.59 3.61 20.67 16.67 0.55 0.99 66.67 8.35 58.33 100.00 38.10 118.35 0.55 2071.89 210.800.16 1.71 22.62 0.33 10.770.05 2.30 1.27 27.75 0.980.27 16.67 2.55 3.32 0.10 3.134.53 1.23 41.67 100. 8.33 3.47 91.670.05 16.67 2.03 23.91 33.33 9.09 1.38 988.13 0.35 13.77 28.09 10.79 24.96 8.33 0.15 0.41 218.47 4.28 32.49 0.36 0.07 3.16 0.76 11.91 2.21 0.17 90.91 18.18 45 41.38 0 0.10 1.77 27.27 50.92 0.37 0.29 0.55 41.67 35.21 0 0.27 1.83 25.00 52.29 0.76 0.75 1.26 33.33 66.86 0.97 2.13 2.420.05 0.61 50.007.77 8.330.53 1.09 107.12 66.67 1.46 1.17 25.00 5.51 0.10 590.71 0.08 1.75 8.54 49.89 27.27 3.05 0.72 1.91 0.271.70 100.00 50.37 1.930.05 0.96 33.33 0.26 16.67 305.66 8.33 3.34 88.67 5.58 4.61 1.28 1.51 2.62 0.05 1.98 0.04 81.82 0.33 1.86 2.03 83.33 579 54.55 165.96 128.75 1.81 0 5.51 1.33 100.00 683. 0.07 0.36 9.09 3.89 0.03 0.851.06 2.40 25.00 0.56 25.00 81.42 40.75 1.18 0.59 0.03 1.03 8.33 0.29 0.00 1.03 0.78 81.82 148.27 1. % . . spp. 0.32 0.26 8.33 4.84 0.07 3.14 8.59 75.00 238.57 2.60 0.30 0.36 36.36 24. accus sp spp fl Prey Item spp. 0.11 1.25 16.67 22.54 0.33 sp. 0.32 4.39 25.00 117.72 1.70 Sapphirina Corycaeus typicus Ditrichocorycaeus brehmi Agetus limbatus Onchocorycaeus latus Farranula rostrata Corycaeus Oncaea venusta conifera Triconia Lubbockia squillimana Sapphirina metallina Microsetella Urocorycaeus furcifer Urocorycaeus Oithona plumifera Caligus Corycaeus ovalis parva Vettoria Oncaea media Oncaea mediterranea Euterpina acutifrons Caligus rapax Copepoda nauplius Cirripedia larvaeMysidaceaIsopodaAmphipodaDecapoda larvaePalaemon Brachyura larvae 0.11Mollusca 0.43Gastropoda 8.33Bivalvia 0.37Chaetognatha 0.48 1.03 0.11Appendicularia 50.00 4.51 2.49Thaliacea 1.06 0.05 50.00 0.07Actinopterygii 8.33 0.67 70.06 0.44Fish larvae 148.55 8.33 1.01 3.66Fish eggs 2.15 0.03 0.11 9.70 13.49 41.67 17.96 1.01 0.20 0.14 0.48 6.00 9.53 8.33 91.67 1.20 0.09 19.30 8.33 5.17 8.33 25.00 0.65 0.21 1245.09 0.75 13. 4.45 6.44 2.58 0.29 367.58 6.74 14.01 0.59 41.67 0.04 16.67 5.31 0.20 3.04 25.00 124.69 28.10 0.03 0.03 1.80 0.31 90.70 1.43 3.62 0.27 1.31 0 9.09 8.33 13.2 0.41 0.03 1.47 9.09 0.09 13.63 0.03 1.91 1.06 0.10 7.17 25.00 1.67 0.04 54.55 9.09 1.05 2.47 0.07 148.86 8.33 65.48 0.03 5.14 1.09 0.48 0.67 18.18 9 5.67 1.0 1 94.69 0.69 0.17 0.71 Corycaeus giesbrechti Corycaeus Table 1 cont. Table Diet of Cepola macrophthalma from the Aegean Sea 215 3 Table 2 Table IRI %IRI = 45) n W%F % Table continues on next page. Table N 0.50 5.150.33 6.67 0.23 26.67 37.70 0.42 15.15 0.17 0.08 0.74 6.67 5.50 0.06 0.08 0.51 6.670.33 0.55 3.94 26.67 0.04 23.48 0.26 0.25 0.39 6.67 4.27 0.05 0.25 0.270.33 6.670.25 1.44 3.08 20.00 3.49 20.00 0.04 35.57 66.70 0.39 0.74 % .24 1.00 1.76 26.67 73.57 0.81 .20 0.92 0.51 26.67 38.02 0.42 0.17 1.42 0.35 26.673.25 47.21 0.17 0.52 0.04 6.67 1.37 0.02 8 3.87 11.27 14.84 53.33 1392.36 15.40 46 8.26 10.77 3.71 60.00 868.65 9.60 36.64 1.68 0.17 0.62 13.33 10.56 0.12 255.10 1.81 1.00 0.08 40.00 43.19 0.48 IRI %IRI = 42) ( Winter n W%F % 9 8.09 100.00 2727.78 19.34 19.37 8.79 66.67 1876.75 20.75 N 0.05 1.43 7.14 10.61 0.08 1.59 1.96 64.29 228.22 1.62 0.58 0.08 13.33 8.83 0.10 0.050.82 1.66 0.42 7.14 35.71 12.24 44.28 0.09 0.31 0.38 2.80 28.57 91.04 0.65 % 67 86.00 78.37 100.00 16437.44 90.90 83.47 56.23 100.00 13970.05 84.19 , in the Sığacık Bay sampling periods IRI %IRI = 50) Autumn ( n W%F Cepola macrophthalma % sh, N 0.11 4.59 18.00 84.51 0.54 0.11 2.10 7.14 15.77 0.11 0.17 0.04 13.33 2.75 0.0 % IRI %IRI = 60) Summer ( n Spring ( Diet composition of red bandfi W%F % N 0.320.08 1.89 15.000.72 0.46 15.000.24 3.81 30.00 33.16 1.39 0.36 5.00 8.12 135.67 0.09 1.48 8.12 0.09 2.07 2.93 45.00 224.76 2.46 25.17 9.56 94.00 3264.80 20.96 1.64 2.04 64.29 2 0.080.95 0.290.64 0.86 5.00 25.00 0.20 15.000.32 1.83 45.32 1.41 0.02 12.520.56 0.50 5.00 0.14 0.48 30.00 0.05 8.63 0.68 0.09 31.23 18.00 0.34 4.22 13.20 4.97 0.08 96.00 0.11 2.29 882.49 14.29 5.67 2.46 34.26 3.41 0 92.86 0.11 1.53 545.4 7.14 11.68 0.08 0.25 0.16 6.67 2.71 0.03 7.720.08 2.53 45.00 0.13 5.00 461.12 5.040.56 1.06 3.90 1.14 20.00 0.01 3.74 82.00 34.020.08 626.480.64 0.37 0.07 4.02 0.07 0.48 5.00 15.00 1.42 0.64 2.69 50.00 0.73 10.54 7.14 0.01 0.12 55.91 1.28 0.36 29.37 4.59 2.46 74.00 3.38 78.57 434.43 2.79 458.57 7.76 4.79 92.86 1165. 0.400.56 0.22 20.001.43 0.75 1.54 5.00 40.00 12.36 0.13 118.89 6.52 0.59 1.30 0.07 1.66 34.00 76.32 0.49 0.16 1.81 14.29 28.23 0 1.19 0.51 10.00 16.99 0.19 % . spp. 3.74 0.73 35.00 156.28 1.71 0.48 2.46 50.00 147.25 0.95 1.20 3.26 57.14 spp Prey Item avicornis sp. 0.16 0.84 10.00 9.95 0.11 0.05 2.75 7.14 20.01 0.14 fl sp. 0.08 0.13 5.00 1.06 0.01 Candacia armata Candacia simplex Centropages violaceus Centropages Candacia ethiopica Candacia bispinosa Euchaeta marina typicus Centropages Clausocalanus furcatus Paracalanus nanus Ctenocalanus vanus Clausocalanus arcuicornis Clausocalanus Nannocalanus minor Diaixis pygmaea stylifera Temora OstracodaCopepodaParacalanus parvus 83.05 64.27 95.00 13995.72 89.77 90.70 70.65 100.00 16134.59 85. 0.16 0.72 34.00 30.01 0.19 0.08 2.30 6.67 15.92 0.18 SiphonophoraAnthomedusae Polychaeta Crustacea Cladocera Podon intermedius Pleopis polyphemoides 0.08 0.31Calanoida 5.00Acartia clausi Acartia negligens Calanus 1.94Calocalanus contractus 0.02 Calocalanus 30.47 11.13 90.00 3744.22 40.90 6.31 3.44 82.00 799.31 5.13 19.1 Candacia Lucicutia Isias clavipes abdominalis Pleuromamma Corycaeus clausi 216 Sever and İlhan 06 .37 IRI %IRI = 45) n .33 53.53 0.59 W%F 7.694.33 26.67 40.00 274.13 427.13 3.03 4.72 % N 0.25 0.040.08 6.67 0.04 6.67 1.93 0.02 0.82 0.01 0.25 1.13 6.67 9.22 0.10 0.08 0.47 6.67 3.68 0.04 0.92 0.78 33.33 56.64 0.63 % .43 0.17 0.08 13.33 3.27 0.04 .16 42 6.08 2.09 2.23 20.00 86.25 0.95 .30 2.27 0.17 0.04 13.33 2.75 0.03 .46 6.86 15.53 2.34 46.67 833.87 9.22 .56 1.39 2.92 4.18 13.33 94.66 1.05 IRI %IRI = 42) ( Winter n 86 1304.42 9.25 4.76 1.13 46.67 274.88 3.04 00 2133.47 15.13 7.43 2.19 53.33 512.84 5.67 W%F % 0 1.79 50.00 234.53 1.66 0.08 1.48 6.67 10.45 0.12 77 1.79 50.00 127.92 0.91 0.17 1.02 13.33 15.76 0.17 N 2.350.05 5.72 0.42 78.57 7.140.05 634.301.97 1.18 4.50 1.47 3.39 5.01 7.14 21.48 71.43 0.02 66.67 245.49 8.84 1765.62 1.74 0.06 19.52 0.05 0.48 7.14 3.80 0.03 0.22 3.89 7.14 29.35 0.21 % IRI %IRI = 50) Autumn ( n W%F % N 0.05 1.78 16.00 29.40 0.19 % IRI %IRI = 60) Summer ( n Spring ( W%F % N 0.401.59 1.360.16 2.97 5.00 25.00 0.110.08 5.00 114.03 8.81 0.31 1.25 0.10 5.00 1.35 0.01 1.94 0.02 3.85 2.68 76.00 495.86 3.18 4.37 2.92 85.71 625.04 4 0.24 0.42 15.00 9.85 0.11 0.56 0.95 30.00 45.09 0.49 0.55 1.03 50.00 78.83 0.56 0.83 0.16 33.33 33.03 0 0.080.08 0.220.16 0.02 5.00 1.63 5.00 10.00 1.50 0.51 0.02 17.87 0.01 0.20 0.05 0.11 1.13 2.04 7.14 7.14 15.36 8.43 0.11 0.06 2.390.08 1.65 40.00 3.520.95 5.00 161.47 0.18 1.76 35.00 18.00 23.94 12.87 0.20 39.57 92.00 0.43 3387.08 21.75 17.39 3.95 100. 0.22 0.92 21.43 24.30 0.17 0.25 0.04 20.00 5.79 0. 0.327.64 0.29 15.00 3.43 65.00 9.06 719.52 0.10 7.86 1.60 5.13 1.49 6.07 58.00 76.00 179.23 851.63 1.15 5.47 0.27 4.87 0.53 4.37 28.57 92.86 857. 23.07 0 0.48 10.08 15.00 158.32 1.73 5.67 1.91 74.00 560.70 3.60 1.86 2.73 42.86 196 13.60 2.71 55.00 897.05 9.80 1.98 0.64 98.00 256.25 1.65 4.81 5.61 92.86 967 % na spp. 0.48 0.02 15.00 7.49 0.08 0.21 3.61 26.00 99.44 0.64 1.75 2.33 78.57 320 Prey Item accus spp. 8.51 3.59 60.00 725.92 7.93 9.35 3.99 98.00 1307.96 8.40 12.08 1.96 92. fl sp. 0.21 3.02 32.00 103.36 0.66 0.11 2.86 14.29 42.43 0.30 spp. Sapphirina metallina Sapphirina nigromaculata Microsetella Oncaea Lubbockia aculeata Euterpina acutifrons norvegica Microsetella Caligus Cirripedia larvaeMysidaceaIsopoda AmphipodaDecapoda larvaeJaxea nocturna Brachyura larvae 0.16Mollusca 0.62Gastropoda 5.00Bivalvia 0.24Chaetognatha 2.27 1.91Appendicularia 0.08 15.00 3.88 7.83Thaliacea 2.29 0.04 60.00 0.48Actinopterygii 5.00 37.57 0.37 0.79Fish larvae 584.53 15.00 0.41 9.22 6.39 11.84 50.00 4.60 19.04 0.13 12.49 1.91 0.21 479.62 3.34 74.00 3.50 0.27 3.08 1.39 20.00 1264.35 3.19 2.9 25.00 0.64 8.12 108.15 42.00 118.19 3.87 1.18 0.32 20.00 1.29 145.04 10.21 15.00 0.93 90.18 0. 157.91 0.99 1.73 0.55 1.54 35.71 74.70 0.53 0.50 1.91 3.51 1.15 2.25 13 0.69 42.86 28.57 178.47 52.42 1.27 0.37 2.59 6.34 Lubbockia squillima Triconia conifera Triconia Oncaea mediterranea Oithona nana Oithona plumifera Oncaea media Corycaeus parva Vettoria Onchocorycaeus latus Ditrichocorycaeus brehmi furcifer Urocorycaeus Farranula rostrata Corycaeus ovalis Corycaeus typicus Corycaeus giesbrechti Corycaeus Table 2 cont. Table Diet of Cepola macrophthalma from the Aegean Sea 217 10 .68 .26 Table 3 Table IRI %IRI = 17) n 65 17.54 0.18 W%F Table continues on next page. Table % .09 0.16 17.65 3.47 0.04 N 0.22 1.00 17.65 21.43 0.22 0.040.22 0.560.43 0.34 17.65 1.57 17.65 17.65 10.67 0.11 9.88 35.44 0.10 0.36 0.17 1.34 17.65 26.72 0.27 0.130.09 0.11 3.54 17.65 17.65 4.22 63.97 0.04 0.65 % 9 0.22 0.61 17.65 14.56 0.15 .12 .07 0.91.19 2.15 0.35 52.94 0.94 162.14 17.65 1.64 22.63 0.23 0.13 0.78 3.66 52.96 235.29 2.37 0.56 0.30 0.22 35.29 18.43 0.19 7 0.76 1.48 2.10 52.54 189.55 1.91 5 0.77 0.04 0.11 17.65 2.69 0.03 54 2.42 4.26 3.38 52.94 404.34 4.08 .85 0.07 9.42 5.86 52.94 809.09 8.16 31.62 16.44 7.82 3.29 52.94 587.89 5.93 IRI %IRI 1459.06 9.87 5.04 5.86 70.59 769.22 7.76 = 24) ≥40 cm ( n 3 6.48 0.04 0.30 1.96 52.94 120.06 1.21 .83 1604.02 10.85 1.22 5.75 70.59 491.79 4.96 16.67 4.06 0.03 1.91 1.01 17.65 51.59 0.52 W%F % N 0.05 3.09 16.670.55 2.84 52.32 100.00 0.35 1339.34 9.06 17.02 4.22 70.59 1499.65 15.13 % , in the İzmir Bay by length groups .44 76.73 68.78 87.50 12732.64 67.54 83.59 69.50 100.00 15308.48 86.36 IRI %IRI = 75) 30–39.9 cm ( n Cepola macrophthalma W%F sh, % N 0.08 0.29 6.67 2.49 0.02 0.04 1.17 6.67 8.06 0.07 0.040.08 0.65 0.14 6.67 13.33 4.62 2.89 0.04 0.03 % IRI %IRI = 60) 20–29.9 cm ( n Diet composition of red bandfi 10–19.9 cm ( W%F % N 1.33 1.76 35.00 108.08 0.92 0.35 0.78 26.67 30.34 0.26 0.11 0.57 29.17 19.73 0.61 1.010.17 10.000.05 0.760.15 1.34 25.00 16.24 1.22 10.00 0.14 15.00 23.30 13.91 0.20 20.52 0.12 1.65 0.17 0.35 1.96 0.08 1.38 46.67 1.17 13.33 168.76 13.33 1.46 23.15 0.87 16.65 0.20 1.06 0.14 0.05 58.33 0.79 20.83 112.0 17.62 0 0.17 0.39 17.65 9.94 0. 1.79 1.90 56.67 209.19 1.77 0.63 0.78 40.00 56.53 0.49 1.19 2.39 100.00 358. 2.74 2.50 55.003.93 26.28 288.14 66.67 2.44 2013.73 1.10 17.06 0.77 6.06 26.67 38.90 53.33 50.04 2397.82 0.43 20.75 0.54 3.84 31.15 1.28 45 45.83 83.41 0.64 1.060.54 36.67 1.207.34 26.67 62.23 4.45 0.53 65.00 46.31 0.20 0.39 0.57 766.01 0.59 6.49 13.33 1.53 17.20 6.19 33.33 10.24 80.00 0.09 70.67 0.16 1871.77 0.61 16.20 0.49 10.34 0.22 16.67 5.58 0.61 91.67 33.33 10.82 0 27.51 0 0.32 0.25 11.67 6.65 0.06 0.67 1.41 33.33 69.31 0.60 3.13 4.40 35.29 265.47 2 8.00 2.96 91.67 1004.62 8.51 4.06 1.48 60.00 332.32 2.88 18.61 6.76 95.83 24 0.07 0.18 6.67 1.68 0.01 0.08 0.14 6.67 1.45 0.01 0.43 1.50 16.67 32.25 0.22 0 0.020.02 1.200.07 0.06 6.670.02 0.82 5.000.32 0.07 18.33 1.33 8.20 6.67 15.00 0.45 0.07 16.47 0.00 0.14 0.65 24.68 0.28 0.51 0.01 0.21 1.26 0.80 0.08 0.31 13.33 33.33 0.17 1.15 13.33 13.33 20.51 43.78 0.18 0.38 19.56 0.05 3.26 0.87 0.17 0.57 0.03 2.15 20.83 37.50. 113.1 12.97 0.0 0.30 0.43 1.17 1.47 17.65 17.65 25.99 33.52 0 0.34 % spp. 0.37 1.36 21.67 37.41 0.32 1.42 1.83 26.67 86.70 0.75 0.05 0.47 20.83 10 . Prey Item avicornis sp sp. 0.02 0.10 5.00 0.61 0.01 fl Pleuromamma gracilis Pleuromamma Corycaeus clausi Candacia Lucicutia Lucicutia Isias clavipes Labidocera wollastoni abdominalis Pleuromamma SiphonophoraAnthomedusaePolychaetaCrustacea Cladocera Podon intermedius 0.07 0.07 0.03 0.03 10.00 0.05 10.00 0.82 1.06 11.67 1.06 0.01 0.01 10.10 0.35 0.09 0.11 0.04 26.67 0.55 6.67 12.40 0.11 0.16 3.95 0.08 0.03 0.04 0.95 17. Penilia avirostris OstracodaCopepodaCalanoidaAcartia clausi Calocalanus pavo Calocalanus plumulosus Paracalanus parvus 0.10 87.76 0.48 79.32 16.98 100.00 23.33 3.85 16707.20 100.00 95.01 13.42 80.31 2083.05 79.51 0.11 17.65 100.00 18.90 0.04 15981.54 2.97 0.87 87 86.67 6.67 1894.95 16.40 1 6.04 0.05 0.11 0.20 20.8 Clausocalanus furcatus Clausocalanus Nannocalanus minor Diaixis pygmaea stylifera Temora Ctenocalanus vanus Clausocalanus arcuicornis Aetideus giesbrechti Euchaeta marina typicus Centropages Centropages kroyeri Centropages Centropages violaceus Centropages Candacia ethiopica Candacia armata Candacia bispinosa Candacia simplex 218 Sever and İlhan 15 69 IRI %IRI = 17) n 65 4.83 0.05 .65 21.61 0.22 8 52.94 168.75 1.70 W%F % N 0.04 0.67 35.29 25.19 0.25 0.04 0.16 17.65 3.52 0.04 0.04 0.65 17.65 12.32 0.12 0.04 1.48 17.65 26.90 0.27 % 31 0.56 1.43 35.29 70.53 0.71 .11 0.13 1.14 52.94 67.13 0.68 .07 0.13 0.05 17.65 3.12 0.03 .46.48 0.65 0.52 0.42 1.45 35.29 35.29 37.84 69.55 0.38 0.70 .19 0.52 1.75 52.94 120.00 1.21 .18 0.14 2.69 1.76 35.29 157.18 1.59 0.43 1.74 0.83 52.94 135.68 1.37 23 3.95 5.04 0.81 70.59 412.76 4.16 97 2.79 2.43 0.55 70.59 210.15 2.12 0.91 0.14 0.43 0.72 52.94 60.94 0.61 IRI %IRI = 24) ≥40 cm ( n 0 1663.77 12.25 16.07 3.69 35.29 697.41 7.03 00 147.82 1.00 0.09 0.31 17.65 7.03 0.07 W%F 4.14 66.67 366.22 2.48 0.74 2.31 70.59 214.93 2.17 % 27 0.06 16.67 5.52 0.04 0.48 0.34 17.65 14.48 0.15 .84 0.08 12.50 24.01 0.16 0.65 1.43 35.29 73.60 0.74 N 0.11 0.28 4.17 1.63 0.01 0.05 0.69 12.50 9.30 0.06 % 5 17.86 16.03 91.67 3106.70 21.01 5.99 6.37 70.59 872.96 8.81 IRI %IRI = 75) 30–39.9 cm ( n W%F % N 0.04 0.49 6.67 3.52 0.03 0.04 1.51 6.67 10.34 0.09 0.04 0.17 6.67 1.37 0.01 % IRI %IRI = 60) 20–29.9 cm ( n 10–19.9 cm ( W%F % N 0.270.25 0.546.01 0.92 25.00 1.23 30.00 86.67 20.29 35.02 0.17 627.58 0.30 0.47 5.32 0.08 0.88 3.35 0.63 33.33 0.55 13.33 93.33 45.24 0.39 363.94 9.40 0.43 3.15 0.08 0.18 6.39 0.38 0.99 16.67 0.73 79.17 41.67 10.26 584. 0 46.23 0. 0.37 1.26 10.00 16.30 0.14 0.710.42 1.043.26 0.79 35.00 3.09 38.330.07 61.67 61.13 0.21 46.37 0.52 391.75 10.00 0.39 0.47 3.32 1.30 0.14 1.50 2.84 0.59 20.00 0.39 0.02 13.33 33.33 0.12 12.21 1.32 25.19 0.11 62.77 13.33 0.22 0.49 0.54 1.46 1.34 0.54 19.14 0.97 37.50 0.10 0.17 29.17 33.33 68.50 71.03 0 21.42 0 0.09 0.78 17.65 15.28 0. 7.07 1.54 80.00 688.31 5.83 3.43 0.64 93.33 379.03 3.28 3.25 1.26 91.67 412. 0.560.12 1.64 0.79 45.00 15.00 99.26 13.73 0.84 0.12 0.55 0.16 0.79 0.63 46.67 20.00 62.70 15.68 0.54 0.14 0.22 0.05 0.73 0.61 29.17 25.00 27.62 16.58 0 0 0.020.07 1.850.69 0.32 5.00 0.37 11.67 11.67 9.38 4.63 0.08 12.36 0.04 0.08 0.10 0.04 0.46 0.02 6.67 6.67 3.60 0.39 0.03 0.00 0.05 0.04 16.67 1.58 0.01 0.17 2.43 0.94 1.43 35.29 17.65 39.14 68.22 0.39 0. 4.20 1.170.07 60.00 0.78 322.13 13.33 2.73 1.65 11.44 0.19 0.10 0.20 33.33 1.57 61.57 13.33 0.53 0.65 23.51 0.24 0.20 0.11 70.83 2.05 63.25 12.50 26.98 0 % 16.29 3.31 85.00 1666.14 14.12 12.32 1.25 73.33 995.58 8.61 15.75 3.27 87.5 . spp. 2.70 3.82 50.00 325.80 2.76 0.35 0.56 40.00 36.66 0.32 0.27 0.45 29.17 2 accus sp. 0.02 0.65 5.00 3.36 0.03 spp fl Prey Item . spp. sp MysidaceaIsopodaAmphipodaDecapoda larvaePalaemon Brachyura larvaeMollusca Gastropoda 0.05Bivalvia 1.21 0.66Chaetognatha 0.05 0.02Appendicularia 1.46 10.00 2.03 0.20 1.56Thaliacea 65.00 11.67 0.40Actinopterygii 5.00 7.12Fish larvae 10.00 173.30Fish eggs 0.06 24.25 1.47 7.93 10.67 0.20 0.21 0.61 5.93 6.63 0.07 8.99 1.11 0.32 0.75 0.05 4.01 1.48 86.67 33.33 0.55 35.00 20.00 30.00 0.34 1704.13 0.83 14.7 43.42 3.76 212.73 47.79 40.00 0.38 53.96 1.80 0.40 8.33 0.22 0.46 1.14 0.43 55.22 2.74 0.35 3.70 0.88 0.48 34.20 1.04 50. 26.67 1.35 40.00 0.29 20.00 128.98 52.71 27.91 1.12 0.46 0.24 0. 0.05 1.48 12.50 0.08 19.20 1.20 0.13 13.33 0.09 1.14 17.02 17 0.15 0.91 0.09 2.2 0.19 17. 0.65 6.81 52.94 395.07 3.98 Agetus limbatus Onchocorycaeus latus Farranula rostrata Corycaeus Corycaeus giesbrechti Corycaeus ovalis Corycaeus typicus Ditrichocorycaeus brehmi furcifer Urocorycaeus Corycaeus parva Vettoria Oithona plumifera Oncaea media Oncaea mediterranea Oncaea venusta Sapphirina Microsetella Triconia conifera Triconia Lubbockia squillimana Sapphirina metallina Euterpina acutifrons Caligus rapax Caligus Copepoda naupliusCirripedia larvae 0.74 0.66 0.83 10.00 0.88 50.00 13.99 0.12 85.79 0.73 5.20 0.43 33.33 187.67 1.62 1 Table 3 cont. Table Diet of Cepola macrophthalma from the Aegean Sea 219 2 8 1 59 Table 4 Table 30.22 0.28 IRI %IRI = 14) n W%F % Table continues on next page. Table 98 0.74 42.86 73.77 0.68 N 0.12 0.64 14.29 10.92 0.10 0.12 0.44 14.29 8.02 0.07 0.37 0.34 14.29 10.07 0.09 % 5 0.49 1.39 28.57 53.55 0.50 8 0.12 0.64 14.29 10.92 0.10 01 0.86 2.80 28.57 104.57 0.97 .57 0.73 0.78 14.29 21.58 0.20 0.89 0.61 1.42 28.57 58.00 0.54 1.10 1.71 1.55 57.14 186.60 1.73 7 1.22 0.98 1.62 42.86 111.41 1.03 68 3.68 6.97 3.11 71.43 719.74 6.66 05 1.88 5.50 4.02 57.14 544.09 5.04 .68 11.48 3.06 2.13 71.43 370.33 3.43 5.25 13.15 5.26 1.28 42.86 280.31 2.60 16.04 0.11 0.12 0.07 14.29 2.71 0.03 IRI %IRI = 39) ≥40 cm ( n W%F % N 0.07 3.00 15.38 47.18 0.34 0.07 0.10 15.38 2.67 0.02 4.41 8.30 100.00 2270.74 16.45 23.23 7.09 71.43 2165.86 20.05 % 4 87.76 67.14 100.00 15489.97 87.76 72.74 52.09 100.00 12483.30 75.39 , in the Sığacık Bay by length groups IRI %IRI = 66) 30–39.9 cm ( n W%F % Cepola macrophthalma N sh, 0.09 0.37 9.09 4.13 0.04 0.49 1.17 15.38 25.55 0.19 0.24 0.64 14.29 12.66 0.1 0.040.04 1.54 0.43 4.55 4.55 7.18 2.15 0.07 0.02 0.14 1.52 15.38 25.47 0.18 0.12 0.71 14.29 11.88 0.1 0.04 0.12 4.55 0.75 0.01 % IRI %IRI = 78) 20–29.9 cm ( n W%F Diet composition of red bandfi 10–19.9 cm ( % N 0.61 1.09 19.23 32.74 0.36 0.13 0.68 9.09 7.32 0.07 0.28 1.27 30.77 47.82 0.3 0.73 2.87 15.380.730.18 0.52 55.44 0.98 3.85 11.54 0.62 0.09 4.81 13.37 0.08 0.05 0.15 9.09 0.13 0.64 0.10 0.74 1.52 27.27 4.55 0.02 37.59 1.05 0.37 0.01 0.49 1.52 61.54 123.40 0.49 0.95 28.57 0.37 0.24 41.00 14.29 0.3 8.62 0.08 0.060.18 0.60 1.61 3.85 11.54 2.55 20.66 0.03 0.23 0.17 1.64 4.55 8.23 0.08 0.07 0.62 15.38 10.62 0.0 0.07 0.72 15.38 12.20 0.09 0.86 5.17 28.57 172.13 1. 0.060.06 0.094.53 0.03 7.69 6.40 3.85 46.152.82 1.13 3.13 504.39 0.35 0.01 50.00 5.61 0.00 0.26 297.18 2.48 0.04 1.48 13.64 3.30 2.89 0.02 63.64 7.38 4.55 23.62 3.96 341.51 50.00 0.23 3.40 0.29 567.05 7.83 0.00 5.64 9.34 0.28 18.74 92.31 7.51 4.86 30.77 1584 76.92 181 239.67 1.74 0.12 0.10 14.29 3.19 0.03 2.45 3.61 38.46 233.23 2.59 0.64 0.96 54.55 87.49 0.87 1.96 1.69 46.15 168.2 0.370.24 0.57 2.04 7.69 11.54 7.24 26.33 0.08 0.29 0.09 0.47 0.14 0.72 18.18 4.55 21.58 1.04 0.21 0.01 0.07 0.07 0.03 0.07 15.38 15.38 1.61 2.14 0. 0.02 0. 0.12 1.20 11.54 15.31 0.170.49 0.21 0.80 11.54 2.15 9.09 14.92 0.17 21.51 0.55 0.21 0.49 18.18 19.04 0.19 0.63 1.07 46.15 78.33 0 3.43 2.70 42.31 259.17 2.88 5.85 2.52 59.09 494.55 4.92 3.71 2.89 76.92 507. 3.310.06 1.69 34.62 0.17 3.85 173.05 1.921.04 0.90 3.33 1.92 0.01 1.82 26.92 36.36 79.77 187.42 0.89 1.86 0.90 2.80 1.70 1.41 27.27 61.54 70.86 259. 0.70 0.77 1.69 61.54 151.21 % . . spp Prey Item spp . avicornis sp. 0.06 4.13 3.85 16.12 0.18 0.09 0.78 9.09 7.86 0.08 fl sp Pleuromamma abdominalis Pleuromamma Corycaeus clausi Candacia simplex Candacia Lucicutia Isias clavipes Candacia armata Candacia bispinosa Clausocalanus Nannocalanus minor Diaixis pygmaea stylifera Temora Euchaeta marina typicus Centropages violaceus Centropages Candacia ethiopica Ctenocalanus vanus Clausocalanus arcuicornis Clausocalanus furcatus Acartia negligens Calanus Paracalanus nanus Polychaeta 0.24 0.17 7.69Paracalanus parvus 3.21 0.04 0.04 0.04 4.55 0.38 0.00 0.63 0.41 15.38 SiphonophoraAnthomedusae 0.06 0.40 3.85 1.78 0.02 Crustacea Cladocera Podon intermedius Podon polyphemoides OstracodaCopepodaCalanoidaAcartia clausi 93.14 87.86 21.00 96.15 11.76 17404.54 73.08 96.92 2394.41 85.53 26.62 64.53 14.72 90.91 13641.70 7.69 88.8 90.91 2037.62 20.26 1 0.09 0.25 9.09 3.01 0.03 0.07 0.17 15.38 3.73 0.03 0.12 1.99 14.29 Calocalanus contractus Calocalanus 220 Sever and İlhan 9 1 IRI %IRI = 14) n 9 49.46 0.46 8.57 130.54 1.21 W%F % .12 2.53 14.29 37.94 0.35 N 0.12 0.84 14.29 13.81 0.13 % 02 0.12 0.03 14.29 2.23 0.02 06 0.12 0.41 14.29 7.54 0.07 03 0.86 0.61 57.14 83.65 0.77 17 1.57 1.83 2.33 57.14 237.99 2.20 53 1.30 1.47 1.08 57.14 145.60 1.35 .50 4.08 4.77 3.07 71.43 560.15 5.19 .16 0.43 0.49 0.74 14.29 17.60 0.16 57.65 0.42 1.22 0.71 28.57 55.20 0.51 542.24 3.93 3.67 0.78 71.43 317.46 2.94 IRI %IRI = 39) ≥40 cm ( n 1 2019.44 14.63 5.87 1.08 57.14 397.09 3.68 5 141.88 1.03 0.73 3.14 28.57 110.73 1.03 1 848.92 6.15 4.65 0.98 71.43 401.80 3.72 72 46.15 124.68 0.90 2.44 3.28 42.86 245.23 2.27 W%F % 1 1.55 30.77 54.15 0.39 0.73 1.52 28.57 64.39 0.60 2 1.89 61.59 271.51 1.97 2.81 1.11 42.86 168.28 1.56 94 9.68 76.92 970.52 7.03 12.71 24.70 71.43 2672.13 24.74 .21 1.14 30.77 41.43 0.30 0.12 0.07 14.29 2.71 0.03 N 0.07 2.14 15.38 33.93 0.25 0.07 0.34 15.38 6.38 0.05 % IRI %IRI = 66) 30–39.9 cm ( n W%F % N 0.43 0.39 18.18 14.84 0.15 0.07 0.03 15.38 1.61 0.01 0.49 0.17 14.29 9.40 0.0 0.17 4.18 4.55 19.79 0.20 0.21 1.270.09 4.55 0.10 4.55 6.750.04 0.07 0.86 0.85 4.55 0.01 4.11 0.04 % IRI %IRI = 78) 20–29.9 cm ( n W%F 10–19.9 cm ( % N 5.70 5.39 57.69 639.69 7.11 5.63 4.72 50.00 517.49 5.15 3.01 2.62 100.00 562 2.690.67 2.78 23.08 1.06 26.92 126.39 1.41 46.71 2.43 0.52 2.36 1.11 31.82 0.72 18.18 152.43 1.52 33.22 4.55 0.33 2.48 0.07 30.77 0.10 216. 15.38 2.67 0. 0.060.55 4.59 0.89 3.85 23.08 17.89 33.24 0.20 0.37 0.26 0.33 18.18 10.62 0.11 0.21 0.07 30.77 8.57 0. 0.06 0.63 3.85 2.66 0.03 0.24 0.370.06 7.69 0.030.43 3.85 4.75 1.35 0.05 7.69 0.353.74 0.00 2.93 13.67 30.770.06 0.15 2.15 0.26 204.97 3.85 0.82 2.28 9.09 2.52 8.51 1.23 31.82 0.09 9.78 0.04 0.10 119.27 0.35 0.49 1.19 4.55 1.65 1.61 1.31 15.38 0.07 1.78 61.54 0.24 0.02 32.97 179. 15.38 0.21 0.24 1.86 30.77 4.79 0.03 63.69 0.12 0.46 0.03 0 14.29 2.23 0.02 0.06 1.060.67 3.85 1.38 30.77 4.32 0.05 63.09 0.70 0.34 0.59 22.73 21.27 0.21 0.07 0.21 15.38 4.26 0. 0.07 1.27 15.38 20.68 0.15 0.24 3.61 14.29 55.13 0.5 11.64 4.45 53.85 865.92 9.63 18.99 5.97 77.27 1928.69 19.18 16.50 5.37 92.3 11.21 4.10 61.54 942.06 10.48 10.46 3.10 77.27 1047.27 10.41 6.92 2.27 92.3 14.94 7.77 61.54 1397.89 15.54 6.96 2.77 63.64 618.86 6.15 3.29 2.14 100.00 % . Prey Item spp. 1.16 1.49 34.62 91.91 1.02 0.51 2.36 22.73 65.23 0.65 0.49 0.79 46.15 59 a 0.06 0.03 3.85 0.35 0.00 0.04 1.21 4.55 5.69 0.06 accus . fl spp . sp spp Corycaeus typicus Ditrichocorycaeus brehmi Corycaeus giesbrechti Corycaeus ovalis Corycaeus Corycaeus Onchocorycaeus latus furcifer Urocorycaeus Farranula rostrata IsopodaAmphipodaDecapoda larvaeJaxea nocturna Brachyura larvaeMollusca Gastropoda Bivalvia 0.92 4.45 50.00 0.18 0.60 268.25 11.54 2.98 2.22 9.07 6.83 0.10 81.82 0.37 0.64 0.37 740.24 2.46 7.69 40.91 7.36 2. 126.85 5.69 1.26 0.06 0.04 0.2 0.13 0.30 2.13 0.59 0.31 4.55 18.18 4.55 11.02 9.89 3.28 0.11 0.10 0.03 0.91 0.96 30.77 Oncaea media conifera Triconia Oncaea Lubbockia squillimana Lubbockia aculeata Sapphirina metallina Sapphirina nigromaculata Microsetella Euterpina acutifrons norvegica Microsetella Caligus Cirripedia larvaeMysidacea 0.55 2.21 19.23Chaetognatha 0.06Appendicularia 53.08 0.49Thaliacea 0.59 3.85Actinopterygii 2.13Fish larvae 5.43 2.11 27.27 0.02 206.39 0.30 2.05 1.87 0.18 0.86 31.82 0 0.37 0.57 19.23 15.38 68.88 0.68 10.70 22.02 0.56 0.12 0.24 2.51 2.30 2.82 46.1 6.44 2.09 22.73 27.27 198.71 133.86 1.98 1.33 0.98 2.5 1. 0.04 0.45 0.09 4.55 4.76 4.55 2.24 0.02 22.01 0.21 0.22 2.27 0.07 30.77 4.00 15.38 76.41 0.55 62.55 0.49 0.45 2.97 0.24 14.2 4.32 2 Vettoria parva Vettoria Oithona nan Oncaea mediterranea Oithona plumifera Table 4 cont. Table Diet of Cepola macrophthalma from the Aegean Sea 221 Table 5 Table .0 cm IRI ≥ 2911.81 Copepoda IRI ≥ 2185.78 Copepoda Decapoda larvae IRI > 323.53 Cladocera Decapoda larvae Fish larvae IRI > 242.86 Cladocera Chaetognatha IRI ≤ 323.53 Brachyura larvae Chaetognatha Other groups IRI ≤ 242.86 Appendicularia Fish larvae Other groups IRI ≥ 2287.57 Copepoda Decapoda larvae IRI ≥ 2665.48 Copepoda IRI > 254.17 Cladocera Brachyura larvae IRI > 296.16 Decapoda larvae IRI ≤ 254.17 Mysidacea Cirripedia larvae Other groups IRI ≤ 296.16 Appendicularia Chaetognatha Other groups Length group IRI ≥ 2130.03 Copepoda IRI ≥ 1840.99 Copepoda IRI > 236.67 Decapoda larvae IRI > 204.55 Cirripedia larvae Decapoda larvae IRI ≤ 236.67 Cirripedia larvae Appendicularia Other groups IRI ≤ 204.55 Cladocera Brachyura larvae Other groups , according to Morato Index IRI ≥ 2055.01 Copepoda IRI ≥ 1246.18 Copepoda IRI > 228.33 Not found IRI > 138.46 Cladocera Decapoda larvae IRI ≤ 228.33 Cladocera Appendicularia Other groups IRI ≤ 138.46 Cirripedia larvae Appendicularia Other groups Cepola macrophthalma sh, IRI ≥ 2400.03 Copepoda IRI ≥ 1410.07 Copepoda Decapoda larvae IRI > 266.67 Decapoda larvae Appendicularia IRI > 156.67 Appendicularia Chaetognatha IRI ≤ 266.67 Brachyura larvae Chaetognatha Other groups IRI ≤ 156.67 Mysidacea Cladocera Other groups nt prey, SP = secondary OP occasional prey. IRI ≥ 2454.57 Copepoda IRI ≥ 2346.34 Copepoda IRI > 272.50 Cirripedia larvae Decapoda larvae Bivalvia IRI > 260.70 Decapoda larvae IRI ≤ 272.50 Cladocera Chaetognatha Other groups IRI ≤ 260.70 Cirripedia larvae Bivalvia Other groups Season Preferred prey items of red bandfi IRI ≥ 1874.97 Copepoda IRI ≥ 1719.00 Copepoda IRI > 208.33 Decapoda larvae IRI > 191.00 Cladocera Cirripedia larvae Decapoda larvae IRI ≤ 208.33 Cladocera Brachyura larvae Other groups IRI ≤ 191.00 Brachyura larvae Ostracoda Other groups Spring Summer Autumn Winter 10.0–19.9 cm 20.0–29.9 cm 30.0–39.9 cm ≥40 Copepoda Copepoda Appendicularia Anthomedusae Decapoda larvae Cladocera Decapoda larvae Thaliacea Other groups Appendicularia Chaetognatha Other groups

MIP IRI ≥ 1987.47 MIP IRI ≥ 1485.00 SP IRI > 220.83 SP IRI > 165.00 OP IRI ≤ 220.83 OP IRI ≤ 165.00

İzmir Bay İzmir Bay Sığacık S MIS S - sampling site; MIS = Morato Index score; MIP main importa 222 Sever and İlhan parvus (in autumn); and Oncaea media, Temora stylifera, vanus, Pleuromamma spp., Scottocalanus persecans, Paracalanus parvus, and Ditrichocorycaeus brehmi Oncaea spp., and Corycaeus spp.), while amphipod and (in winter). In each bay, the diet of red bandfi sh for all decapod larvae were found only sporadically. The stomachs length groups consisted of pelagic copepods as the main of bandfi sh from Ebro estuary contained also deep-water food item. However, the number of the decapods and plankton species. Other studies—conducted by Atkinson teleost larvae, which are bigger prey items compared with (1976) and Atkinson et al. (1977) in the Bristol Channel Copepods, increased slightly along with the increasing (12 m of depth) and covering one and 10 fi sh specimens, size of the bandfi sh increased (Tables 3 and 4). respectively—revealed that the dominant food items were According to the Bray–Curtis similarity index, the diet copepods (Calanus helgolandicus, Centropages typicus, composition of the red bandfi sh was similar for seasons Temora longicornis, and Candacia armata). Few other food in each bay. The similarities were found as 78.89% items, such as euphausiids, chaetognaths (Sagitta spp.), in summer, 75.93% in autumn, 75.02% in winter, and copepod larvae, and red bandfi sh eggs were found only 70.91% in spring (Fig. 2). sporadically. Regner (1977), studying C. macrophthalma in central Adriatic, identifi ed copepod eggs, copepodids, and SIMILARITY Oikopleura spp. larvae as the dominant food items of the red bandfi sh post-larvae. According to Stergiou (1993) the 100 90 80 70 60 50 diet of bandfi sh from the bays of Euboikos and Pagassitikos øsum (western Aegean Sea, Greece), consisted of copepods (60.4%) and euphausiids (30.1%). The above-mentioned author also noticed seasonal differences in the fi sh diet. Ssum In September the most abundant were: Clausocalanus spp., Acartia sp., and Temora stylifera; In December—Calanus øaut helgolandicus, Eucalanus spp., and Clausocalanus spp.); in March—Calanus helgolandicus and Eucalanus spp.; while Saut in June—euphausiids. Čakelić (unpublished*) conducted a study on the diet of red bandfi sh from Adriatic Sea and reported that the øwin dominant food item in summer were euphausiids, followed by copepods, whereas in all the remaining seasons the Swin principal diet item were copepods. The presently reported results on the stomach content øspr of red bandfi sh were consistent with the results of the fi ve research projects described above. The only major Sspr difference was that in the studies done by Vives et al. (1959), Stergiou (1993), and Čakelić (unpublished*) copepods were the second dominant food item, whereas Fig. 2. Dendogram showing seasonal similarities in stomach in our study pelagic copepods were dominant in all contents of Cepola macrophthalma, based on the Bray– seasons. We believe that the presently reported shift Curtis index (abbreviations: İ (prefi x) = İzmir Bay, S towards copepods might be a result of the presumed (prefi x) = Sığacık Bay; Suffi xes: sum = summary, spr = abundance of zooplankton off the Turkish coast. This spring, aut = autumn, win = winter) would be consistent with the results of Stergiou (1993), who concluded that, red bandfi sh food preference changes In respect of the stomach content analysis, red according to the abundance of the plankton rather than the bandfi sh fed on pelagic planktonic organisms, is a size of planktonic organisms. According to Vives et al. zooplanktophagous species and especially its main food (1959) and Atkinson (1977) there was a relation between item group was identifi ed as copepods (Tables 1–5). the composition of zooplankton found in the stomach contents of the red bandfi sh and the depth they inhabit. DISCUSSION The prey organisms found in the stomach contents of There were hitherto only fi ve studies conducted on the red bandfi sh well refl ect the species composition present feeding habits of red bandfi sh, Cepola macrophthalma. at respective depths inhabited/visited by this fi sh (Scotto Vives et al. (1959), studying this fi sh from Spanish waters di Carlo et al. 1984, Weikert and Trinkaus 1990, Sever (Ebro estuary), reported that the main food items were unpublished**, Aker unpublished***). Stergiou (1993) Sagitta spp., followed by copepods (especially Calanus spp., reported that red bandfi sh hides and rests in the cavities Centropages typicus, Clausocalanus spp., Ctenocalanus made by it, but subsequently it feeds in the pelagic zone.

* Čakelić M. 2014. Sezonska prehrana i dužinsko–maseni odnos mačinca crvenog, Cepola macrophthalma (Linnaeus, 1758) na području južnog Jadrana. [Seasonal nutrition and length–weight relationship for red bandfi sh, Cepola macrophthalma (Linnaeus, 1758) in the southern Adriatic.] BSc Thesis. Dubrovnik University, Croatia. [In Croatian.] ** Sever T.M. 1997. Ege Denizi Pelajik Kopepod’larının Belirlenmesi ve Önemli Türlerinin Nitel ve Nicel Dağılımları. [Establishment of pelagic copepods and quanta- tive and qualitative distributions of important copepod species in Aegean sea of Turkey.] PhD Thesis. Dokuz Eylül University, İzmir, Turkey. [In Turkish.] *** Aker V. 2002. Türkiye’nin Orta Ege Karasuları Planktonik Kopepodlarının Mevsimsel Dağılımı. [Seasonal distribution of planktonic copepods in the Turkish coastal waters of the middle Aegean Sea.] PhD Thesis. Ege University. [In Turkish.] Diet of Cepola macrophthalma from the Aegean Sea 223

In our study, the copepods were the dominant group in Bauchot M.-L. 1987. Poissons osseux. Pp. 891–1421. In: the stomach content, but this group was represented by Fischer W., Bauchot M.-L., Schneider M. (eds.) Fiches meroplanktonic and holoplanktonic organisms. This fact FAO d’identifi cation des espèces pour les besoins de la obviously showed that bandfi sh feed in the pelagic zone. pêche. (Révision 1). Méditerranée et mer Noire. Zone Prey items in the stomach contents represented de pêche 37. Vol. 2, Vertébrés. FAO, Rome. different taxa, including also rarely consumed prey items, Benli H.A., Tarkan A.N., Sever T.M. 2001. Comparison representing Isopoda, Amphipoda, Gastropoda, and of the mesozooplankton composition the southwestern Thaliacea. Copepods were the most important prey group Black Sea, Sea of Marmara and eastern Aegean Sea. of bandfi sh and they were dominant in terms of numbers Turkish Journal of Marine Science 7 (3): 163–179. and frequency in each season and stomach. Copepods Brodskii K.A. 1967. Calanoida of the far eastern seas were also reported as the dominant group in each season and polar basin of the USSR. Keys to the Fauna of by zooplankton studies from various region of the Aegean the USSR. Vol. 35. Israel Program for Scientifi c Sea (Moraitou-Apostolopoulou 1972, 1976, 1985, Translations, Jé rusalem, Israel. Benli et al. 2001, Özel and Aker 2004, İşinibilir 2009, Dulčić J., Kokan B., Vrgoč N., Glamuzina B., Conides Sever unpublished*, Aker unpublished*). Exceptionally, A.J., Skaramuca B. 2008. Age, growth and mortality cladocerans were dominant group along with copepods in of red bandfi sh, Cepola macrophthalma (L.) in the a seasonal and horizontal sampling study by Özel and Aker eastern Adriatic Sea (Croatian coast). Journal of (2004). Nonetheless, frequency of Cladocera was lower Applied Ichthyology 24 (3): 351–353. in our study. This fact may be explained that Cladocera DOI: 10.1111/j.1439-0426.2007.01047.x species are more abundant in surface waters than they Düzbastılar F.O. 2014. Dip trolünden kaçan kurdele are in the feeding areas of red bandfi sh (Moraitou- balığının (Cepola macrophthalma) ölüm oranlarının Apostolopoulou and Kiortsis 1973). belirlenmesi. [Determining escape mortality of red Corycaeus typicus, Oncaea media, Acartia clausi, and bandfi sh (Cepola macrophthalma) escaping from Euterpina acutifrons were found frequently in both, oceanic bottom trawl.] Ege Journal of Fisheries and Aquatic and neritic regions in the Aegean Sea (Sever unpublished*). Sciences 31 (2): 61–68. A study by Aker (unpublished*) from the Aegean Sea also DOI: 10.12714/egejfas.2014.31.2.02 [In Turkish.] reported that Centropages typicus, Oncaea media, Acartia Giacalone V.M., D’Anna G., Badalamenti F., Pipitone clausi, Temora stylifera, Corycaeus typicus were dominant C. 2010. Weight–length relationships and condition in all seasons, while Paracalanus parvus was a dominant factor trends for thirty-eight fi sh species in trawled and species in the winter. The most dominant copepod species of untrawled areas off the coast of northern Sicily (central our study were: Oncaea media, Corycaeus typicus, Acartia Mediterranean Sea). Journal of Applied Ichthyology clausi, Clausocalanus arcuicornis, Centropages typicus, 26 (6): 954–957. Ditrichocorycaeus brehmi, Temora stylifera, Paracalanus DOI: 10.1111/j.1439-0426.2010.01491.x parvus, and Euterpina acutifrons with various numbers in Hyslop E.J. 1980. Stomach content analysis—A review each season. of methods and their applications. Journal of Fish None of the previously mentioned researchers, Biology 17 (4): 411–429. studying feeding habits of the red bandfi sh, observed how DOI: 10.1111/j.1095-8649.1980.tb02775.x the prey composition of this fi sh changes along with its İşinibilir M. 2009. Summer mesozooplankton communities length. Our study seems to be fi rst providing such data. in the Turkish coastal waters of north Aegean Sea. We also managed to demonstrate that the red bandfi sh is a Journal of FisheriesSciences.com 3 (3): 237–242. zooplanktophagous species. Even though the species lives DOI: 10.3153/jfscom.2009.029 on the bottom, it prefers to feed on pelagic organisms. Kaya M., Özaydın O., Benli H.A. 2001. Age and growth This fact indicates ontogenetically based food preferences parameters of red bandfi sh (Cepola rubescens L., of the species. 1766) in İzmir Bay. Turkish Journal of Zoology 25 (2): 111–116. ACKNOWLEDGEMENT Martín P., Sabatés A. 1991. Spatio-temporal distribution This study was supported by the Ege University pattern of the red band-fi sh Cepola rubescens Linnaeus Scientifi c Research Fund (Project No: 2005/SÜF/007). at different stages of its life cycle in the northwestern Mediterranean. Journal Fish Biology 39 (4): 549–557. REFERENCES DOI: 10.1111/j.1095-8649.1991.tb04385.x Atkinson R.J.A. 1976. Some preliminary fi eld Moraitou-Apostolopoulou M. 1972. Occurrence and observations of the burrows of the red bandfi sh, Cepola fl uctuation of the pelagic copepods of the Aegean Sea rubescens L. Journal of Fish Biology 9 (2): 181–183. with some notes on their ecology. Hellenic Oceanology DOI: 10.1111/j.1095-8649.1976.tb04671.x and Limnology 11: 325–402. Atkinson R.J.A., Pullin R.S.V., Dipper F.A. 1977. Moraitou-Apostolopoulou M. 1976. Infl uence de la mer Studies on the red band fi sh, Cepola rubescens. Journal Noire sur la composition de la faune planctonique of Zoology (London) 182: 369–384. (Copépodes) de la mer Egée. Acta Adriatica 18 (16): DOI: 10.1111/j.1469-7998.1977.tb03916.x 271–274.

* See footnote on page 222. 224 Sever and İlhan

Moraitou-Apostolopoulou M. 1985. The zooplankton Stergiou K.I. 1999. Intraspecifi c variations in size- and age- communities of the eastern Mediterranean (Levantine at-maturity for red bandfi sh, Cepola macrophthalma. Basin, Aegean Sea); Infl uence of man-made factors. Environmental Biology of Fishes 54 (2): 151–160. Pp. 303–329. DOI: 10.1007/978-1-4899-2248-9_14 DOI: 10.1023/A:1007594719450 In: Moraitou-Apostolopoulou M., Kiortsis V. (eds.) Stergiou K.I., Economidis P., Sinis A. 1992. Age, growth Mediterranean Marine Ecosystems. Vol. 8. NATO and mortality of red bandfi sh, Cepola macrophthalma Conference Series. Springer US, New York, NY, USA. (L.), in the western Aegean Sea (Greece). Journal Fish DOI: 10.1007/978-1-4899-2248-9 Biology 40 (3): 395–418. Moraitou-Apostolopoulou M., Kiortsis V. 1973. The DOI: 10.1111/j.1095-8649.1992.tb02586.x cladocerans of the Aegean Sea Occurrence and Stergiou K.I., Economidis P., Sinis A. 1996. Sex ratio, seasonal variation. Marine Biology 20 (2): 137–143. spawning season and size at maturity of red bandfi sh DOI : 10.1007/BF00351451 in the western Aegean Sea. Journal Fish Biology 49 Özel İ., Aker V. 2004. İzmir körfezi, tuzla önleri (4): 561–572. zooplanktonu. [“A study on the zooplankton of DOI: 10.1111/j.1095-8649.1996.tb00054.x Çamaltı saltern front, İzmir Bay”.] Türk Sucul Yaşam Stergiou K.I., Papaconstantinou C. 1993. Natural Dergisi 2 (2): 160–167. [In Turkish.] mortality of red bandfi sh, Cepola macrophthalma (L.), Pinkas L., Oliphant M.S., Iverson I.L.K. 1971. in the Aegean Sea (Greece): Comparison of direct and Food habits of albacore, bluefi n tuna and bonito in indirect estimation methods. Fisheries Research 16 Californian waters. Fish Bulletin 152: 1–105. (4): 347–361. Regner S. 1977. On the feeding of Serranus hepatus DOI: 10.1016/0165-7836(93)90146-x (L.) and Cepola macrophthalma (L.) postlarvae in Tortonese E. 1986. Cepolidae. Pp. 810–811. In: Whitehead the central Adriatic. Rapports et procès-verbaux P.J.P., Bauchot M.-L., Hureau J.-C., Nielsen J., des réunions – Commission internationale pour Tortonese E. (eds.) Fishes of the North-eastern Atlantic l’exploration scientifi que de la Mer Méditerranée 24: and the Mediterranean. Vol. II. UNESCO, Paris. 87–88. Vallisneri M., Piccinetti C., Tommasini S. 2006. Age, Rose M. 1933. Copépodes pélagiques. Faune de growth, and gonad organization in red bandfi sh France. Vol. 26. Fédération Française des sociétés de (Cepola macrophthalma L., 1758) from the Adriatic sciences naturelles; offi ce central de faunistique. Paul Sea. Acta Adriatica 47 (2): 217–221. Lechevalier, Paris. Vives F., Suau P., Planas A. 1959. Sobre la biología de la Scotto di Carlo B., Ianora A., Fresi E., Hure J. 1984. cinta (Cepola rubescens L.). Investigación Pesquera Vertical zonation patterns for Mediterranean copepods 14: 3–23. from the surface to 3000 m at a fi xed station in the Washington H.G. 1984. Diversity, biotic and similarity Tyrrhenian Sea. Journal of Plankton Research 6 (6): indices: A review with special reference to aquatic 1031–1056. ecosystems. Water Research 18 (6): 653–694. DOI: 10.1093/plankt/6.6.1031 DOI: 10.1016/0043-1354(84)90164-7 Stergiou K.I. 1993. Abundance–depth relationship, Weikert H., Trinkaus S. 1990. Vertical mesozooplankton condition factor and adaptive value of zooplanktophagy abundance and distribution in the deep eastern for red bandfi sh, Cepola macrophthalma. Journal Fish Mediterranean Sea SE of Crete. Journal of Plankton Biology 42 (5): 645–660. Research 12 (3): 601–628. DOI: 10.1111/j.1095-8649.1993.tb00374.x DOI: 10.1093/plankt/12.3.601

Received: 9 March 2016 Accepted: 2 September 2016 Published electronically: 30 September 2016