Taphonomic and Palaeoecological

Total Page:16

File Type:pdf, Size:1020Kb

Taphonomic and Palaeoecological TAPHONOMIC AND PALAEOECOLOGICAL INVESTIGATIONS OF RIVERSLEIGH OLIGO-MIOCENE FOSSIL SITES MAMMALIAN PALAEOCOMMUNITIES AND THEIR HABITATS Mina Bassarova Thesis submitted for the degree of Doctor of Philosophy at the University of New South Wales, Australia August, 2005 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Bassarova First name: Mina Other name/s: Plamenova Abbreviation for degree as given in the University calendar: PhD School: BEES Faculty: Science Title: Taphonomic and palaeoecological investigations of Riversleigh Oligo-Miocene fossil sites – mammalian palaeocommunities and their habitats Abstract 350 words maximum: (PLEASE TYPE) The palaeoecology of selected fossil sites from the Riversleigh World Heritage Area, northwestern Queensland, Australia, was studied with the aim of describing the palaeohabitats of the sites through the use of characteristics of mammalian community structure. Taphonomic analyses were carried out to determine whether the study sites represent allochthonous or autochthonous assemblages. Subsequently, ecological attributes of the mammalian fossil assemblages were inferred from functional morphology. Trophic and locomotor behaviours were used to describe the adaptive structure of communities and a method was established for inferring the locomotor behaviour of fossil taxa from morphometrics of their calcanea. Such ecological attributes of the assemblages can be used in reconstructing habitats. This is possible because modern mammalian community structure (as represented by ecological diversity/attribute characteristics) has been found to correlate with habitat structure and thus has predictive value, directly applicable in palaeoecology. Modern mammalian faunas from a variety of habitats around the world were used as possible analogues for the Riversleigh fossil faunas. Multivariate statistical techniques were explored for identifying potential similarities between the community structure of the fossil faunas and that of the modern faunas. Annual rainfall was then estimated for the fossil sites through regression analysis allowing climatic inference from the faunal palaeocommunities. On the basis of similarities in community structure, general habitat or vegetation structure was proposed for the fossil assemblages. The results of the analyses undertaken indicate that Riversleigh early-middle Miocene habitats were densely forested. The late Oligocene Quantum Leap Site local fauna and the late Miocene Encore Site local fauna suggest mixed vegetation, or more open environments. The trend of decreasing annual rainfall through the Miocene and the palaeohabitats of the Miocene sites proposed here fit the general pattern of vegetation and climate change during this period for the Australian continent as a whole. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). ……………………………………… …………………………………………………… ……….……………………. Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing to the Registrar. Requests for a longer period of restriction may be considered in exceptional circumstances if accompanied by a letter of support from the Supervisor or Head of School. Such requests must be submitted with the thesis/dissertation. FOR OFFICE USE ONLY Date of completion of requirements for Award: Registrar and Deputy Principal THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS N:\FLORENCE\ABSTRACT Table of contents 1. Introduction 1 1.1. Background 1 1.2. Aims 3 1.3. The sites 4 1.4. Chapter outline 7 1.5. References 10 2. Taphonomy of Oligo-Miocene fossil sites of the Riversleigh World Heritage Area 13 2.1. Introduction 13 2.1.1. Definitions 13 2.1.2. Time-averaging 14 2.1.3. Methods of quantification 17 2.2. Aims 21 2.3. Methods 21 2.4. Results and discussion 30 2.5. Summary 48 2.6. References 50 Appendix A1. Raw data for percentage of various break shapes on limb bones for all size categories 57 Appendix A2. Raw data for skeletal representation for small, medium and large size categories at the fossil sites studied 58 Appendix A3. Specimens used from Camel Sputum Site for age distribution analysis 59 3. The calcaneum – on the heels of marsupial locomotion 61 3.1. Introduction 61 3.1.1. Locomotor behaviour 61 3.1.2. Aims 63 3.1.3. Why calcanea? 63 3.1.4. Ancestry as a confounding factor 65 3.2. Methods 66 3.2.1. Specimens 66 3.2.2. Measurements 66 3.2.3. Locomotor categories 68 3.2.4. Notes on the modern marsupial sample 69 3.2.5. Statistical analysis 70 3.3. Results 71 3.4. Discussion 81 3.5. Conclusions 85 3.6. References 86 Appendix B1. Calcaneum measurements for modern marsupial species represented by more than one specimen 89 Appendix B2. Raw calcaneum measurements for modern marsupial species represented by single specimens 90 ii Appendix B3. Raw calcaneum measurements for modern marsupial species used as ‘unknowns’ in analysis 91 Appendix B4. Raw calcaneum measurements for fossil marsupials 92 Appendix B5. Normal probability plots for all variables 93 4. The diets of Riversleigh fossil mammals 94 4.1. Introduction 94 4.2. Mammalian cranio-dental functional morphology 95 4.3. Trophic categories 99 4.4. References 105 5. Palaeoecology of Riversleigh fossil sites 109 5.1. Introduction 109 5.1.1. Definitions 109 5.1.2. Aims 111 5.1.3. Background 112 5.2. Methods 113 5.2.1. Consideration of potential bias in fossil community representation 113 5.2.2. Modern communities: localities and habitats 118 5.2.3. Ecological diversity analyses 124 5.2.3.1. Variables used 124 5.2.3.2. Mammal taxa 125 5.2.3.3. Statistical analyses – determining habitat types and annual rainfall for fossil communities 129 5.3. Results 132 5.3.1. Consideration of potential bias in fossil community representation 132 5.3.2. Ecological diversity analyses 138 5.3.2.1.Determining broad habitat types from modern communities 138 5.3.2.2.Grouping fossil communities into broad habitat types 142 5.3.2.3.Determining annual rainfall for fossil communities 150 5.4. Discussion 154 5.4.1. Consideration of potential bias in fossil community representation 154 5.4.2. Habitat descriptions based on modern localities 156 5.4.3. Determining habitat types and annual rainfall for fossil communities 165 5.4.4. The influence of abiotic factors on vegetation structure and animal communities 169 5.5. Conclusions 171 5.6. References 173 Appendix C1. Species lists for Australian sites 181 Appendix C2. Species list for New Guinea locality 182 Appendix C3. Species lists for Central American sites 183 Appendix C4. Species lists for South American sites 189 Appendix C5. Species lists for North and Central American sites 191 iii Appendix C6.1. Trophic and locomotor adaptations for modern marsupial and monotreme species 193 Appendix C6.2. Trophic and locomotor adaptations for modern primate and edentate species from Central and South America 196 Appendix C6.3. Trophic and locomotor adaptations for modern species of Carnivora, Perissodactyla, Artiodactyla and Lagomorphia from North, Central and South America 197 Appendix C6.4. Trophic and locomotor adaptations for modern rodent species, listed by area 199 Appendix C7.1. Split-sample cluster analysis for diet categories for modern sites 203 Appendix C7.2. Split-sample cluster analysis for diet and locomotion categories for modern sites excluding Africa 204 Appendix C8.1. Zskewness values for variables from the ‘Diet Only’ data set 205 Appendix C8.2. Zskewness values for variables from the ‘Diet and Locomotion’ data set 205 6. Australia’s changing climate through the Tertiary: review of different lines of evidence 206 6.1. Climate change 206 6.2. Evidence of climate change 207 6.2.1. Moving continents and changing currents 207 6.2.2. Palynology and plant macrofossils 209 6.2.3. Oxygen isotopes 214 6.2.4. Sea creatures 215 6.2.5. Grossplots 216 6.2.6. Terrestrial faunas 217 6.2.7. Other factors relevant to climate and vegetation 219 6.3. Concluding remarks 221 6.4. References 224 7. Conclusions and further work 228 iv List of figures Figure 1.1.1. Map of Australia showing location of Riversleigh 1 Figure 1.3.1. Quantum Leap Site and BitesantennarySite 5 Figure 1.3.2. Camel Sputum and Mike’s Menagerie Sites 6 Figure 1.3.3. Ringtail Site 6 Figure 1.3.4. Encore Site 6 Figure 2.3.1. Relative abundance of taxa at each site 26 Figure 2.3.2. Size variation at Camel Sputum Site 26 Figure 2.4.1. Percentage of various levels of bone weathering 31 Figure 2.4.2. Percentage of various break shapes on limb bones 33 Figure 2.4.3. Fragmentation of particular elements 34 Figure 2.4.4. Extent of fragmentation for all elements and all size categories combined 36 Figure 2.4.5. Nambaroo sp. 3 from Quantum Leap Site 37 Figure 2.4.6. Turtle carapace from Quantum Leap Site 37 Figure 2.4.7. Skeletal representation 39 Figure 2.4.8. Hydraulic transport potential groupings 39 Figure 2.4.9. Mortality profiles for dasyurids and Perameles gunni 43 Figure 2.4.10. Mortality profiles for kangaroos 45 Figure 2.4.11.
Recommended publications
  • SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
    Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • Australian Journal of Earth Sciences Paleosol Record of Neogene Climate
    This article was downloaded by: [Retallack, Gregory J.][University of Oregon] On: 28 September 2010 Access details: Access Details: [subscription number 917394740] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Australian Journal of Earth Sciences Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t716100753 Paleosol record of Neogene climate change in the Australian outback C. A. Metzgera; G. J. Retallacka a Department of Geological Sciences, University of Oregon, Eugene, OR, USA Online publication date: 24 September 2010 To cite this Article Metzger, C. A. and Retallack, G. J.(2010) 'Paleosol record of Neogene climate change in the Australian outback', Australian Journal of Earth Sciences, 57: 7, 871 — 885 To link to this Article: DOI: 10.1080/08120099.2010.510578 URL: http://dx.doi.org/10.1080/08120099.2010.510578 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Heterothermy in Pouched Mammals a Review
    bs_bs_bannerJournal of Zoology Journal of Zoology. Print ISSN 0952-8369 MINI-SERIES Heterothermy in pouched mammals – a review A. Riek1,2 & F. Geiser2 1 Department of Animal Sciences, University of Göttingen, Göttingen, Germany 2 Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia Keywords Abstract heterothermy; marsupials; phylogeny; torpor; hibernation. Hibernation and daily torpor (i.e. temporal heterothermy) have been reported in many marsupial species of diverse families and are known to occur in ∼15% of all Correspondence marsupials, which is a greater proportion than the percentage of heterothermic Alexander Riek, Department of Animal placentals. Therefore, we aimed to gather data on heterothermy, including Sciences, University of Göttingen, minimal body temperature, torpor metabolic rate and torpor bout duration for Albrecht-Thaer-Weg 3, 37075 Göttingen, marsupials, and relate these physiological variables to phylogeny and other Germany. Tel: +49 551 395610; Fax: +49 physiological traits. Data from published studies on 41 marsupial species were 551 39 available for the present analysis. Heterothermic marsupials ranged from small Email: [email protected] species such as planigales weighing 7 g to larger species such as quolls weighing up to 1000 g. We used the marsupial phylogeny to estimate various heterothermic Editor: Heike Lutermann traits where the current dataset was incomplete. The torpor metabolic rate in relation to basal metabolic rate (%) ranged from 5.2 to 62.8% in daily Received 13 May 2013; revised 31 July heterotherms and from 2.1 to 5.2% in marsupial hibernators, and was significantly 2013; accepted 8 August 2013 correlated with the minimum body temperature in daily heterotherms (R2 = 0.77, P < 0.001), but not in hibernators (R2 = 0.10, P > 0.05).
    [Show full text]
  • Marsupialia: Ektopodontidae): Including a New Species Ektopodon Litolophus
    Records of the Western Australian Museum Supplement No. 57: 255-264 (1999). Additions to knowledge about ektopodontids (Marsupialia: Ektopodontidae): including a new species Ektopodon litolophus Neville S. Pledge!, Michael Archer, Suzanne J. Hand2and Henk Godthelp2 1 South Australian Museum, North Terrace, Adelaide, SA 5000; email: [email protected] 2 School of Biological Science, University of New South Wales, Sydney, NSW 2052 Abstract - Information about the extinct phalangeroid family Ektopodontidae has been increased following the discovery of new material from several localities. A new species, Ektopodon litolophus, described on the basis of an Ml from the Leaf Locality, Lake Ngapakaldi, Lake Eyre Basin, is characterized by the extremely simple structure of the crests. Ektopodontids are recorded for the first time from the northern half of the Australian continent through discovery of a tooth fragment at Wayne's Wok Site, Riversleigh World Heritage area, northwestern Queensland. Comparisons of Ml of Olllnia and Ektopodon species now allow evolutionary trends of simplification to be discerned. INTRODUCTION million years; Woodburne et al. 1985), following Ektopodon is a genus of extinct possum-like preliminary analyses by W.K. Harris of pollen from marsupials established by Stirton et al. (1967) on the Etadunna Formation at Mammalon Hill, Lake isolated teeth found at the Early to Middle Miocene Palankarinna. Subsequent work with Leaf Locality (Kutjamarpu Local Fauna) at Lake Ngapakaldi, northeastern South Australia (Figure 1). Further specimens from this locality were described and interpreted by Woodburne and Clemens (1986b), together with new, slightly older Oligocene species in the plesiomorphic genus CJmnia (c. illuminata, C. sp. cf. C.
    [Show full text]
  • West Papua Expedition
    The fabulous Spangled Kookaburra was one of the many highlights (Mark Van Beirs) WEST PAPUA EXPEDITION 22/28 OCTOBER – 10 NOVEMBER 2019 LEADER: MARK VAN BEIRS 1 BirdQuest Tour Report: West Papua Expedition www.birdquest-tours.com The cracking Kofiau Paradise Kingfisher posed ever so well (Mark Van Beirs) This unusual trip was set up to fill in some of the remaining gaps in the Birdquest New Guinea lifelist, so the plan was to visit several hard to reach venues in West Papua. The pre-trip was aiming to climb to the top of 2 BirdQuest Tour Report: West Papua Expedition www.birdquest-tours.com Mount Trikora in the Snow Mountains, but because of recent rioting and civil unrest (whereby several dozen people had been killed), access to the town of Wamena was totally denied to foreign visitors by the authorities. So, sadly, no Snow Mountain Robin… We did manage to visit the famous Wasur National Park, which produced the fantastic Spangled Kookaburra and Grey-crowned and Black Mannikins (all Birdquest lifers) and we reached the island of Kofiau, where the fabulous Kofiau Paradise Kingfisher and the modestly- plumaged Kofiau Monarch (two more Birdquest lifers) showed extremely well. The fabulous lowland rainforest site of Malagufuk gave us a long list of exquisite species amongst which a truly impressive Northern Cassowary, a cute Wallace’s Owlet-nightjar, a sublime Papuan Hawk-Owl and a tremendous Red- breasted Paradise Kingfisher stood out. Kingfishers especially performed extremely well on this tour as we saw no fewer than 15 species, including marvels like Hook-billed, Common Paradise, Blue-black, Beach, Yellow-billed and Papuan Dwarf Kingfishers and Blue-winged and Rufous-bellied Kookaburras.
    [Show full text]
  • Bandicoot Fossils and DNA Elucidate Lineage Antiquity Amongst Xeric
    www.nature.com/scientificreports OPEN Bandicoot fossils and DNA elucidate lineage antiquity amongst xeric-adapted Received: 31 May 2016 Accepted: 31 October 2016 Australasian marsupials Published: 24 November 2016 Benjamin P. Kear1,2, Ken P. Aplin3 & Michael Westerman4 Bandicoots (Peramelemorphia) are a unique order of Australasian marsupials whose sparse fossil record has been used as prima facie evidence for climate change coincident faunal turnover. In particular, the hypothesized replacement of ancient rainforest-dwelling extinct lineages by antecedents of xeric-tolerant extant taxa during the late Miocene (~10 Ma) has been advocated as a broader pattern evident amongst other marsupial clades. Problematically, however, this is in persistent conflict with DNA phylogenies. We therefore determine the pattern and timing of bandicoot evolution using the first combined morphological + DNA sequence dataset of Peramelemorphia. In addition, we document a remarkably archaic new fossil peramelemorphian taxon that inhabited a latest Quaternary mosaic savannah-riparian forest ecosystem on the Aru Islands of Eastern Indonesia. Our phylogenetic analyses reveal that unsuspected dental homoplasy and the detrimental effects of missing data collectively obscure stem bandicoot relationships. Nevertheless, recalibrated molecular clocks and multiple ancestral area optimizations unanimously infer an early diversification of modern xeric-adapted forms. These probably originated during the late Palaeogene (30–40 Ma) alongside progenitors of other desert marsupials, and thus occupied seasonally dry heterogenous habitats long before the onset of late Neogene aridity. Bandicoots (Peramelemorphia) are a speciose order of Australasian marsupials that appeared early in the evolu- tionary history of Australidelphia1. Most are small to medium sized (up to 5 kg) terrestrial omnivores occupying a spectrum of rainforest to desert habitats2,3.
    [Show full text]
  • A New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution of Wombats, Koalas, and Their Relatives (Vombatiformes) Robin M
    www.nature.com/scientificreports OPEN A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2 ✉ , Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2 & Richard H. Tedford5,6 We describe the partial cranium and skeleton of a new diprotodontian marsupial from the late Oligocene (~26–25 Ma) Namba Formation of South Australia. This is one of the oldest Australian marsupial fossils known from an associated skeleton and it reveals previously unsuspected morphological diversity within Vombatiformes, the clade that includes wombats (Vombatidae), koalas (Phascolarctidae) and several extinct families. Several aspects of the skull and teeth of the new taxon, which we refer to a new family, are intermediate between members of the fossil family Wynyardiidae and wombats. Its postcranial skeleton exhibits features associated with scratch-digging, but it is unlikely to have been a true burrower. Body mass estimates based on postcranial dimensions range between 143 and 171 kg, suggesting that it was ~5 times larger than living wombats. Phylogenetic analysis based on 79 craniodental and 20 postcranial characters places the new taxon as sister to vombatids, with which it forms the superfamily Vombatoidea as defned here. It suggests that the highly derived vombatids evolved from wynyardiid-like ancestors, and that scratch-digging adaptations evolved in vombatoids prior to the appearance of the ever-growing (hypselodont) molars that are a characteristic feature of all post-Miocene vombatids. Ancestral state reconstructions on our preferred phylogeny suggest that bunolophodont molars are plesiomorphic for vombatiforms, with full lophodonty (characteristic of diprotodontoids) evolving from a selenodont morphology that was retained by phascolarctids and ilariids, and wynyardiids and vombatoids retaining an intermediate selenolophodont condition.
    [Show full text]