Cocommutative Hopf Algebras with Antipode by Moss Eisenberg Sweedler B.S., Massachusetts Institute of Technology SUBMITTED in PA

Total Page:16

File Type:pdf, Size:1020Kb

Cocommutative Hopf Algebras with Antipode by Moss Eisenberg Sweedler B.S., Massachusetts Institute of Technology SUBMITTED in PA J- Cocommutative Hopf Algebras with Antipode by Moss Eisenberg Sweedler B.S., Massachusetts Institute of Technology (1963) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August, 1965 Signature of Author . .-. .. Department of Mathematics, August 31, 1965 Certified by ....-.. Thesis Supervisqr Accepted by .......... 0................................... Chairman, Departmental Committee on Graduate Students v/I 2. Cocommutative Hopf Algebras 19 with Antipode by Moss Eisenberg Sweedler Submitted to the Department of Mathematics on August 31, 1965, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Abstract In the first chapter the preliminaries of the theory of Hopf algebras are presented. The notion and properties of the antipode are developed. An important filtration is induced in the Hopf algebra by its dual when the Hopf alge- bra is split. It is shown conilpotence and an algebraically closed field insure a Hopf algebra is split. The monoid of grouplike elements is studied. In the second chapter conditions for an algebra A -- which is a comodule for a Hopf algebra H --to be of the form A 'E B ® H (linear isomorphism) are given. The dual situation is studied. The graded Hopf algebra associated with a split Hopf algebra decomposes in the above manner. Chapter III contains the cohomology theory of a commutative algebra which is a module for a cocommutative Hopf algebra. There is extension theory and specialization to the situation the Hopf algebra is a group algebra. Chapter IV is dual to chapter III. Chapter V is devoted to coconnected cocommutative Hopf algebras, mostly in characteristic p > 0 . There, the notion of divided powers is developed and shown to charac- terize the coalgebra structure of a class of Hopf algebras. The Hopf algebras are shown to be extensions of certain sub Hopf algebras by their primitive elements. Thesis Supervisor: Bertram Kostant Title: Professor of Mathematics 3. Contents Introduction ............................................ 4 Chapter I. Preliminaries ............................ 7 Chapter II. Decompositions ......................... 36 Chapter III. Cohomology ....................----. 47 Chapter IV. Cohomology .......................... 87 Chapter V. Cocommutative Coconnected Hopf Algebras. 93 Bibliography . ......................... ......0...... Index ........ ......................... 000............ 162 Biography .... ... *0..........................-.....- 166 -I Introduction A Hopf algebra as considered herein is simultaneously an algebra and a coalgebra where the algebra structure morphisms are morphisms of the coalgebra structure, (or vice versa). This differs from the graded Hopf algebras of [2] Milnor and Moore, except in characteristic 2. The problem is to determine the structure of cocommutative Hopf algebras. Our first approach lies in a cohomology theory. We have constructed abelian cohomology groups Hi(HA) , H(CH)i , 0 < i E Z where H is a Hopf algebra, A an algebra which is a left "C.H.A." H-module, C a coalgebra which is a right "C.H.A." H-comodule. We then determine the structures of algebras (coalgebras) which are extensions of H (C) by B (H) This theory applies to the algebra structure and the co- algebra structure--separately--of coconnected cocommutative Hopf algebras. We hope to develop an extension theory where the extension is a Hopf algebra and is an extension of one Hopf algebra by another. Our cohomology theory gives the familiar group co- homology in case H =p-(G) the group algebra of the group G . If Ar is the group of regular (invertible) elements 5. of A then Hi(H,A) = Hi(G,Ar) Furthermore, if A is a finite Galois extension of the underlying field k and G is the Galois group of A/k then the isomorphism classes of extensions of H =F(G) by A form a subgroup of the Brauer Group. Kostant has shown--the results are unpublished--that a split cocommutative Hopf algebra with antipode is a smash product of a group algebra and a coconnected cocommutative Hoof algebra; and that in characteristic zero a coconnected cocommutative Hopf algebra is a universal enveloping alge- bra of the Lie algebra of primitive elements. We present proofs of these results and study coconnected cocommuta- tive Hopf algebras in characteristic- p > 0 . For a cer- tain class (including all where the restricted Lie algebra of primitive elements is finite dimensional) of coconnected cocommutative Hopf algebras we are able to determine the coalgebra structure. The coalgebra structure is described in a generalization of the Poincare-Birkhoff-Witt theorem. We now outline the generalization. In characteristic zero let (x be an ordered basis for the Lie algebra L , L C U its universal enveloping algebra, a Hopf algebra. If I= i = 0,1,2,... 6. then dx( = i=oz x2=0n The Poincare-Birkhoff-Witt theorem is equivalent to: a a <--- a i) x - x m = 0, mi O < e E Z forms a basis for U In any characteristic we say xo, xlV x2,9..... n . is a sequence of divided powers if n dx =Zx.® xn 1& n-i 1=0 We show how ordered products of divided powers--as in i)-- form a basis for the certain class of coconnected cocommu- tative Hopf algebras. For all coconnected cocommutative Hopf algebras in characteristic p > 0 , we show the Hopf algebra obtained by factoring out the ideal generated by the primitive ele- ments is isomorphic to a sub Hopf algebra of the original Hopf algebra, when the vector space structure on the quo- tient is altered. We also show the original Hopf algebra is an extension--as an algebra and coalgebra--of the quotient by the primitively generated sub Hopf algebra. Chapter I The study of Hopf algebras is a self-dual theory. For this reason diagram notation is useful, as it makes dual definitions and proofs evident. For all time we fix the field k which is the base for all vector spaces. If X1 ,...,Xn are vector spaces over k , n the permutation group on n-letters a e we consider a: Xe - X -> X ... ex x1@ -0 -@ x0 ->x. (& x, Often a will be written (1 ,... in) where i ,...1 1,2,...n) ; in this case 111n X@-- OX ''' 0y ... e X . 1 n If X X2 1 = n , @Xn is a left G- module. If X, Y are vector spaces "f: X -Y" means f is a linear map from X to Y Once we define a "right" object such as module or co- module, we consider the "left" object to be defined with the mirror definition. Similarly for "left" objects. 8. Algebras (A,m,-q) is an algebra (over k) where A is a vector space over k , m: A @ A -+ A T: k -+ A , if the follow- ing diagrams are commutative. Igm Ti@I A®A A - 3 A @A k(DA~- A®1@A I) m®I m A II) -m m 1S A AA ) A A (1k A AA I) is equivalent to associativity. II) is equivalent to TI(1), (rI) is a unit. k is an algebra where a is the identity, m is the usual multiplication. An algebra A is commutative if AO A m (2,1) A is commutative. A e A If A is an algebra, X, Y vector spaces f: X ->Y then kD@f: X -+ A Y x -+ l@ f(x) where for an algebra A , 1 E A always denotes 'QA(l) If A and B are algebras A & B is an algebra where 9. (A B) q (A @ B) (> A A BOB m A mB mA® B A( B and nA e B = k @ 11B A D k . f: A ->B is a morphism of algebras if the following diagrams are commutative: A A A ff ff k f B B B 4 B -$A k k A will often be written k A If A is an algebra a left A-module is a vector space M with a map ?P: A®D M -.*M satisfying: k@I A (A M )A M M > A (M M A 0 M 'f M If M, N are left A-modules f: M -+ N is a mor- phism of left A-modules if I 10. A M-) M jf is commutative . SI@ f A@N& N > N An augmentation EA of an algebra A is an algebra morphism eA : A -+ k . An augmented algebra is an algebra with a fixed augmentation. If A is ar augmented algebra k is a left (or right) A-module by: EI I m A 0 k - 3 k k -+ k If M is a left A-module and N a right A-module N @A M is a vector space such that *N I - (9 ?M NO A( M ) NO M - N (AM _+ 0 is an exact sequence of vector spaces. If A is an augmented algebra, A+ = Ker e A, M a left A-module, then k ®AM = Coker (A+O M ) A 0 M - ) , i@I ?P or if A+ - M denotes Im(A + M ) A M - M) i®I k A M = M/(A+ - M) Coalgebras (C,d,E) is a coalgebra over k where C is a vector space over k , 11. d: C -+ CtC s: C - k if the following diagrams are commutative: k C ' C C d C C O----C d I) d dO I C II) C®C I d C SC 0C C (k - C@ C I E I) is equivalent to coassociativity II) is equivalent to E is an augmentation of a coalgebra. k is a coalgebra where d = k® I and e = the identity. A coalgebra is cocommutative if C @ C (2,1) C is commutative. C OC d If C is a coalgebra and X, Y are vector spaces f: X - Y , then E f: C®X - Y C D X c k Y ® aYc If C, D are coalgebras C @) D is a coalgebra where 12.
Recommended publications
  • Forms of Hopf Algebras and Galois Theory 3
    FORMS OF HOPF ALGEBRAS AND GALOIS THEORY BODO PAREIGIS The theory of Hopf algebras is closely connected with various ap- plications, in particular to algebraic and formal groups. Although the rst o ccurence of Hopf algebras was in algebraic top ology, they are now found in areas as remote as combinatorics and analysis. Their struc- ture has b een studied in great detail and many of their prop erties are well understo o d. We are interested in a systematic treatmentofHopf algebras with the techniques of forms and descent. The rst three paragraphs of this pap er givea survey of the present state of the theory of forms of Hopf algebras and of Hopf Galois theory esp ecially for separable extensions. It includes many illustrating exam- ples some of which cannot b e found in detail in the literature. The last two paragraphs are devoted to some new or partial results on the same eld. There we formulate some of the op en questions whichshould be interesting ob jects for further study.We assume throughout most of the pap er that k is a base eld and do not touch up on the recent b eautiful results of Hopf Galois theory for rings of integers in algebraic numb er elds as develop ed in [C1]. 1. Hopf algebra forms As a rst example of the o ccurence of a Hopf algebra let us consider the units functor. In the sequel let k be a commutative, asso ciativering with unit. Later on it will b e a eld, in particular the eld of rationals or reals.
    [Show full text]
  • Arxiv:1703.06546V3 [Math.OA] 28 Feb 2018 [ Rn 22-SARS-05614-UNU DYNAMICS
    PARTIAL ACTIONS OF C∗-QUANTUM GROUPS ∗ FRANZISKA KRAKEN1, PAULA QUAST2, AND THOMAS TIMMERMANN3 ∗ Abstract. Partial actions of groups on C -algebras and the closely related actions and coactions of Hopf algebras received much attention over the last decades. They arise naturally as restrictions of their global counterparts to non-invariant subalge- bras, and the ambient eveloping global (co)actions have proven useful for the study of associated crossed products. In this article, we introduce the partial coactions of ∗ ∗ C -bialgebras, focussing on C -quantum groups, and prove existence of an enveloping global coaction under mild technical assumptions. We also show that partial coactions of the function algebra of a discrete group correspond to partial actions on direct sum- ∗ mands of a C -algebra, and relate partial coactions of a compact or its dual discrete ∗ C -quantum group to partial coactions or partial actions of the dense Hopf subalge- ∗ bra. As a fundamental example, we associate to every discrete C -quantum group a quantum Bernoulli shift. 1. Introduction Partial actions of groups on spaces and on C∗-algebras were gradually introduced in [14], [15], [21], with more recent study of associated crossed products shedding new light on the inner structure of many interesting C∗-algebras; see [16] for a comprehensive introduction and an overview. In the purely algebraic setting, the corresponding notion of a partial action or a partial coaction of a Hopf algebra on an algebra was introduced in [12]. Naturally, such partial (co)actions arise by restricting global (co)actions to non-invariant subspaces or ideals, and in these cases, all the tools that are available for the study of global situation can be applied to the study of the partial one.
    [Show full text]
  • An Application of Finite Groups to Hopf Algebras
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 14, No. 3, 2021, 816-828 ISSN 1307-5543 { ejpam.com Published by New York Business Global An application of finite groups to Hopf algebras Tahani Al-Mutairi1,2, M. M. Al-Shomrani1,∗ 1 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia 2 Department of Mathematics, Qassim University, Buraydah, Saudi Arabia Abstract. Kaplansky's famous conjectures about generalizing results from groups to Hopf al- gebras inspired many mathematicians to try to find solusions for them. Recently, Cohen and Westreich in [8] and [10] have generalized the concepts of nilpotency and solvability of groups to Hopf algebras under certain conditions and proved interesting results. In this article, we follow their work and give a detailed example by considering a finite group G and an algebraically closed field K. In more details, we construct the group Hopf algebra H = KG and examine its properties to see what of the properties of the original finite group can be carried out in the case of H. 2020 Mathematics Subject Classifications: 20D10, 20D15, 16T20, 17B37, 81R50, 81R12 Key Words and Phrases: Hopf algebras, Integral elements, Semisimple Hopf algebra, Left coideal subalgebra, Solvability of groups and Hopf algebras, Nilpotency of groups and Hopf alge- bras. 1. Introduction Finite group theory has been remarkably enriched in the last few decades by putting more attention on the classification of finite simple groups. The most important structure theorem for finite groups is the Jordan{Holder Theorem, which states that any finite group is built up from finite simple groups.
    [Show full text]
  • Module and Comodule Categories - a Survey
    Module and Comodule Categories - a Survey Robert Wisbauer University of D¨usseldorf,Germany e-mail [email protected] Abstract The theory of modules over associative algebras and the theory of comodules for coassociative coalgebras were developed fairly indepen- dently during the last decades. In this survey we display an intimate connection between these areas by the notion of categories subgenerated by an object. After a review of the relevant techniques in categories of left modules, applications to the bimodule structure of algebras and comodule categories are sketched. 1. Module theory: Homological classification, the category σ[M], Morita equivalence, the functor ring, Morita dualities, decompositions, torsion theo- ries, trace functor. 2. Bimodule structure of an algebra: Multiplication algebra, Azumaya rings, biregular algebras, central closure of semiprime algebras. 3. Coalgebras and comodules: C-comodules and C∗-modules, σ-decom- position, rational functor, right semiperfect coalgebras, duality for comodules. B 4. Bialgebras and bimodules: The category B, coinvariants, B as B M projective generator in B, fundamental theorem for Hopf algebras, semiper- fect Hopf algebras. M 5. Comodule algebras: (A-H)-bimodules, smash product A#H∗, coin- H variants, A as progenerator in A . 6. Group actions and moduleM algebras: Group actions on algebras, A GA as a progenerator in σ[A GA], module algebras, smash product A#H, ∗ ∗ A#H A as a progenerator in σ[A#H A]. 1 1 Module theory In this section we recall mainly those results from module categories which are of interest for the applications to bimodules and comodules given in the subsequent sections.
    [Show full text]
  • Arxiv:Q-Alg/9509023V1 22 Sep 1995
    July 1993 Published in Advances in Hopf Algebras, Marcel Dekker Lec. Notes Pure and Applied Maths 158 (1994) 55-105. ALGEBRAS AND HOPF ALGEBRAS IN BRAIDED CATEGORIES1 SHAHN MAJID2 Department of Applied Mathematics & Theoretical Physics University of Cambridge, Cambridge CB3 9EW, U.K. ABSTRACT This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise super-algebras and super-Hopf algebras, as well as colour-Lie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braided-commutative’ or ‘braided-cocommutative’ Hopf algebras (braided groups) is reviewed and a fully diagrammatic proof of the reconstruction theorem for a braided group Aut (C) is given. The theory has important implications for the theory of quasitriangular Hopf algebras (quantum groups). It also includes important examples such as the degenerate Sklyanin algebra and the quantum plane. One of the main motivations of the theory of Hopf algebras is that they provide a gener- arXiv:q-alg/9509023v1 22 Sep 1995 alization of groups. Hopf algebras of functions on groups provide examples of commutative Hopf algebras, but it turns out that many group-theoretical constructions work just as well when the Hopf algebra is allowed to be non-commutative. This is the philosophy associated to some kind of non-commutative (or so-called quantum) algebraic geometry. In a Hopf algebra context one can say the same thing in a dual way: group algebras and enveloping algebras are cocommutative but many constructions are not tied to this.
    [Show full text]
  • Galois Extensions Over Commutative and Non-Commutative Base
    GALOIS EXTENSIONS OVER COMMUTATIVE AND NON-COMMUTATIVE BASE Gabriella Bohm¨ Research Institute for Particle and Nuclear Physics, Budapest, H-1525 Budapest 114, P.O.B.49, Hungary e-mail: [email protected] Abstract This paper is a written form of a talk. It gives a review of various notions of Galois (and in particular cleft) extensions. Extensions by coalgebras, bialgebras and Hopf algebras (over a commutative base ring) and by corings, bialgebroids and Hopf algebroids (over a non-commutative base algebra) are systematically recalled and compared. INTRODUCTION The history of Hopf Galois extensions is nearly 40 years long, as it can be traced back to [20]. Since then it is subject to a study of always renewing interest. There are several reasons of this interest. First of all, the algebraic structure is very rich. It has strong relations with the problem of ring extensions. It is connected to (co-)module theory and a descent problem. On the other hand, Hopf Galois theory unifies various situations in an elegant manner. It is ca- pable to describe e.g. classical Galois extensions of fields or strongly group-graded algebras. Another application of fundamental importance comes from non-commutative differential ge- ometry. From this latter point of view, a (faithfully flat) Hopf Galois extension is interpreted as a (dual form of a) non-commutative principal bundle. Although the theory of Hopf Galois extensions was very fruitful, the appearance of non-fitting examples forced it to be generalised. Generalisations have been made in two different direc- tions. In one of them the coacting Hopf algebra (or bialgebra) was replaced by a coalgebra.
    [Show full text]
  • Algebras and Cyclic Homology
    Homology of L∞-algebras and Cyclic Homology Masoud Khalkhali∗ A celebrated theorem of Loday and Quillen [LQ] and (independently) Tsygan [T] states that the Lie algebra homology of the Lie algebra of stable matrices over an associative algebra is canonically isomorphic, as a Hopf algebra, to the exterior power of the cyclic homology of the associative algebra. The main point of this paper is to lay the ground such that an extension of this theorem to the category of A∞-algebras becomes possible (theorem 3.1). The category of L∞- (respectively, A∞-) algebras extend the category of differential graded (DG) Lie (respectively, DG associative) algebras. These concepts are both due to J. Stasheff. See [S], [LS], and references therein, and also [HS] where an alternative approach to L∞-algebras is given. In [Kh], we proposed an approach to homological invariants of A∞- algebras (Hochschild, cyclic, periodic cyclic, etc.) based on the notion of X-complex due to Cuntz and Quillen [CQ]. It seems that it is now possible to extend most of the tools of noncommutative geometry of Connes [C] to the homotopical setting of A∞ and L∞-algebras. There is, however, a notable exception in that so far we don’t know how the K-theory of an A∞-algebra should be defined. 1 L∞ and A∞ algebras Let V be a vector space (not graded). Let ScV denote the cofree cocommutative counital coassociative coalgebra generated by V . Over fields of characteristic zero there are two c c ⊗n different constructions for S V that we recall now. First, let T V = M V be the cofree n≥0 counital coassociative coalgebra generated by V .
    [Show full text]
  • Arxiv:2101.05575V4 [Math.QA] 8 Jul 2021 [T6 Hoe ]O Mn3 Hoe 8.2.4])
    QUANTUM GALOIS GROUPS OF SUBFACTORS SUVRAJIT BHATTACHARJEE, ALEXANDRU CHIRVASITU, AND DEBASHISH GOSWAMI Dedicated to the memory of Prof. V.F.R. Jones Abstract. For a finite-index II1 subfactor N ⊂ M, we prove the existence of a universal Hopf ∗-algebra (or, a discrete quantum group in the analytic language) acting on M in a trace-preserving fashion and fixing N pointwise. We call this Hopf ∗-algebra the quantum Galois group for the subfactor and compute it in some examples of interest, notably for arbitrary irreducible finite-index depth-two subfactors. Along the way, we prove the existence of universal acting Hopf algebras for more general structures (tensors in enriched categories), in the spirit of recent work by Agore, Gordienko and Vercruysse. Introduction The theory of subfactors is one of the cornerstones of the modern theory of operator algebras. Since Jones’ beautiful and path-breaking discovery of a deep connection between subfactors and knot theory [Jon91,Jon16], there have been numerous applications of subfactors to diverse fields of mathematics and beyond (e.g. physics). Early on (e.g. [Ocn88]), it was recognized that plain group theory is not sufficient to appropriately capture the symmetry of a subfactor. Addition- ally, the links with Hopf-algebra/quantum-group theory was conspicuous in the construction of several classes of subfactors from Hopf (or, more generally, weak Hopf) algebra (co)actions. As an example, one may recall the characterizations of depth-two finite index subfactors in terms of weak Hopf algebra actions (see for instance, [NV00a]). The similarity between finite field extensions and finite-index subfactors suggests a Galois- theoretic approach to symmetry.
    [Show full text]
  • Jhep03(2019)079
    Published for SISSA by Springer Received: February 6, 2019 Accepted: March 5, 2019 Published: March 14, 2019 Towards a full solution of the large N double-scaled JHEP03(2019)079 SYK model Micha Berkooz,a Mikhail Isachenkov,a;b Vladimir Narovlanskya and Genis Torrentsa aDepartment of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel bInstitut des Hautes Etudes´ Scientifiques, 35 Route de Chartres, 91440 Bures-sur-Yvette, France E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We compute the exact, all energy scale, 4-point function of the large N double- scaled SYK model, by using only combinatorial tools and relating the correlation functions to sums over chord diagrams. We apply the result to obtain corrections to the maximal Lyapunov exponent at low temperatures. We present the rules for the non-perturbative diagrammatic description of correlation functions of the entire model. The latter indicate that the model can be solved by a reduction of a quantum deformation of SL(2), that generalizes the Schwarzian to the complete range of energies. Keywords: Holography and condensed matter physics (AdS/CMT), Matrix Models, Quantum Groups, Random Systems ArXiv ePrint: 1811.02584 Open Access, c The Authors. https://doi.org/10.1007/JHEP03(2019)079 Article funded by SCOAP3. Contents 1 Introduction and summary of results1 1.1 Summary of results, and outline3 2 Computing using chord diagrams3 2.1 Chord diagrams4 2.2 Observables6 2.3 Analytic
    [Show full text]
  • Hopf Galois Theory of Separable Field Extensions
    Treball final de grau GRAU DE MATEMATIQUES` Facultat de Matem`atiques Universitat de Barcelona HOPF GALOIS THEORY OF SEPARABLE FIELD EXTENSIONS Marta Salguero Garc´ıa Directora: Dra. Teresa Crespo Realitzat a: Departament d'Algebra` i Geometria Barcelona, June 27, 2016 Abstract Hopf Galois theory is a generalization of Galois theory. Galois theory gives a bijec- tive correspondence between intermediate fields of a Galois field extension (normal and separable) and subgroups of the Galois group. Hopf Galois theory substitutes the Galois group by a Hopf algebra. In the case of separable extensions it has a characterization of the Hopf Galois character in terms of groups. Thus, we use Magma in order to obtain all Hopf Galois structures of extensions of degree 8. i Acknowledgements I want to thank Professor Teresa Crespo for all the help and time she has spent with me these last five months. I would also like to thank Teresa as well as Joan Nualart, who were my teachers of Algebraic Equations for the past year, for their patience, enthusiasm and time when I most needed it. That subject was very difficult for me but actually led me to this dissertation. I want to thank my teachers of the University of Extremadura too, where I started my degree, for they laid the foundations. I am especially grateful to Juan A. Navarro, Jos´eNavarro, Juan Sancho, Pedro Sancho and Fernando S´anchez for having been such wonderful teachers and, furthermore, models and friends. I want to thank my family, especially my parents, my friends and my local churches in Barcelona and in Badajoz for their support during my undergraduate studies.
    [Show full text]
  • The Freedom of Yetter-Drinfeld Hopf Algebras
    Advances in Pure Mathematics, 2014, 4, 522-528 Published Online September 2014 in SciRes. http://www.scirp.org/journal/apm http://dx.doi.org/10.4236/apm.2014.49060 The Freedom of Yetter-Drinfeld Hopf Algebras Yanhua Wang School of Mathematics, Shanghai University of Finance and Economics, Shanghai, China Email: [email protected] Received 1 August 2014; revised 2 September 2014; accepted 13 September 2014 Copyright © 2014 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract In this paper, the fundamental theorem of Yetter-Drinfeld Hopf module is proved. As applications, the freedom of tensor and twisted tensor of two Yetter-Drinfeld Hopf algebras is given. Let A be a Yetter-Drinfeld Hopf algebra. It is proved that the category of A-bimodule is equivalent to the cat- egory of AA⊗ -twisted module. Keywords Hopf Algebra, Hopf Module, Yetter-Drinfeld Module, Yetter-Drinfeld Hopf Algebra 1. Introduction Let k be a field and A an algebra. A left A -module is a k -vector space V together with a k -linear map ⊗→ such that →=→ → and →=. The category of left -module is denoted by AV V abvabv( ) 1 vv A ∆ ε A M . Dually, let (C,,) be a coalgebra. A left C -comodule is a k -vector space V together with a k -linear map ρ :V→⊗ VC such that −10 a−−1⊗⊗ a 1 a 0= a − 1⊗ a 0⊗ a 0, ε aa−10= a. ∑∑( )12( ) ( ) ( ) ∑( ) C The category of left C -comodule is denoted by M .
    [Show full text]
  • The Kontsevich Integral for Bottom Tangles in Handlebodies
    THE KONTSEVICH INTEGRAL FOR BOTTOM TANGLES IN HANDLEBODIES KAZUO HABIRO AND GWENA´ EL¨ MASSUYEAU Abstract. Using an extension of the Kontsevich integral to tangles in handle- bodies similar to a construction given by Andersen, Mattes and Reshetikhin, we construct a functor Z : B! A“, where B is the category of bottom tangles in handlebodies and A“ is the degree-completion of the category A of Jacobi diagrams in handlebodies. As a symmetric monoidal linear category, A is the linear PROP governing \Casimir Hopf algebras", which are cocommutative Hopf algebras equipped with a primitive invariant symmetric 2-tensor. The functor Z induces a canonical isomorphism gr B =∼ A, where gr B is the as- sociated graded of the Vassiliev{Goussarov filtration on B. To each Drinfeld associator ' we associate a ribbon quasi-Hopf algebra H' in A“, and we prove that the braided Hopf algebra resulting from H' by \transmutation" is pre- cisely the image by Z of a canonical Hopf algebra in the braided category B. Finally, we explain how Z refines the LMO functor, which is a TQFT-like functor extending the Le{Murakami{Ohtsuki invariant. Contents 1. Introduction2 2. The category B of bottom tangles in handlebodies 11 3. Review of the Kontsevich integral 14 4. The category A of Jacobi diagrams in handlebodies 20 5. Presentation of the category A 31 6. A ribbon quasi-Hopf algebra in A“ 43 7. Weight systems 47 8. Construction of the functor Z 48 ' 9. The braided monoidal functor Zq and computation of Z 55 arXiv:1702.00830v5 [math.GT] 11 Oct 2020 10.
    [Show full text]