Integrated Load Switches Versus Discrete Mosfets (Rev. A)

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Load Switches Versus Discrete Mosfets (Rev. A) Application Report SLVA716A–December 2015–Revised May 2019 Integrated Load Switches Versus Discrete MOSFETs Alek Kaknevicius and Arthur Huang ................................................................. Drivers and Load Switches ABSTRACT The most common approach to load switching solutions is to use a Power MOSFET surrounded by discrete resistors and capacitors; however, in most cases using a fully integrated load switch has significant advantages. While both discrete and integrated load switching solutions perform the same basic function (turn on and turn off), distinctions exist, such as the transient behavior and total solution size. This application report highlights many drawbacks and limitations of a discrete switching solution and discusses how they can be overcome with an integrated load switch. Contents 1 Summary of Load Switching................................................................................................ 2 2 PMOS Discrete Circuit #1 .................................................................................................. 3 2.1 Performance......................................................................................................... 3 2.2 Adding a Resistor to Slow the Output Rise Time............................................................... 5 2.3 Vth Voltage Disadvantage .......................................................................................... 6 2.4 Active Low Disadvantage .......................................................................................... 6 3 PMOS Discrete Circuit #2 .................................................................................................. 6 3.1 Performance......................................................................................................... 7 3.2 VIN Leakage Disadvantage ....................................................................................... 9 3.3 Adding a Resistor to Slow the Output Rise Time............................................................... 9 4 PMOS Discrete Circuit #3................................................................................................. 10 4.1 Performance ....................................................................................................... 11 4.2 Disadvantage when Applying VIN ............................................................................... 12 5 PMOS Discrete Circuit #4 ................................................................................................ 14 6 NMOS Discrete Circuits ................................................................................................... 15 7 Load Switches .............................................................................................................. 16 7.1 Performance ....................................................................................................... 17 7.2 Size Advantage.................................................................................................... 19 7.3 Feature Advantages .............................................................................................. 19 8 Conclusion .................................................................................................................. 21 9 References .................................................................................................................. 22 SLVA716A–December 2015–Revised May 2019 Integrated Load Switches Versus Discrete MOSFETs 1 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated Summary of Load Switching www.ti.com 1 Summary of Load Switching A typical system involves a power supply and multiple loads which require various load currents. In most cases, the system must independently control which loads are on, when they are turned on, and how quickly they turn on. As previously mentioned, this power switching, as Figure 1 shows, can be implemented using a discrete MOSFET circuit or an integrated load switch. Power Switches Load Power Supply Load Load Figure 1. Power Switching A discrete MOSFET circuit contains several components to control the turnon and turnoff of a discrete power MOSFET. These circuits can be enabled or disabled by using a GPIO signal from a microcontroller. Figure 2 shows several of these circuits. VIN VOUT VIN VOUT VIN VOUT ON ON ON Figure 2. PMOS Discrete Circuits Load switches can also be used to open and close the connection between the power rail and the corresponding load. These integrated devices have several benefits and features while they are enabled, disabled, or even switching between the two states. Figure 3 shows a load switch circuit. Power Supply VIN VOUT Load ON EN GND OFF Load Switch Figure 3. Load Switch Circuit The following sections use switching waveforms to show and compare the discrete circuits and integrated load switches when used for power switching. 2 Integrated Load Switches Versus Discrete MOSFETs SLVA716A–December 2015–Revised May 2019 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated www.ti.com PMOS Discrete Circuit #1 2 PMOS Discrete Circuit #1 The simplest discrete circuit that can be used for power switching is a PMOS transistor whose gate is driven by a GPIO. VIN VOUT ON Figure 4. PMOS Discrete Circuit #1 The benefit of this solution is simplicity. Only one component is required and the operation is simple—when the GPIO is high, the PMOS is turned off, and when the GPIO is pulled low, the PMOS is turned on. 2.1 Performance The performance of the PMOS solution is evaluated by looking at the way the PMOS transistor is able to switch on with a load attached. For the purpose of this application report, a resistive load of 1 Ω and capacitive load of 4.7 µF are used. Figure 5 shows this type of circuit. 3.3 V VIN VOUT 47 µF 4.7 µF 1 3.3 V ON Figure 5. PMOS Discrete Circuit #1 with a Resistive and Capacitive Load The input capacitance was chosen to be 10 times higher than the output capacitance to show a solution with strong compensation for transient currents seen during start up. Figure 6 shows the typical turn on behavior of this circuit. SLVA716A–December 2015–Revised May 2019 Integrated Load Switches Versus Discrete MOSFETs 3 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated PMOS Discrete Circuit #1 www.ti.com Figure 6. Turn on Behavior for PMOS Discrete Circuit #1 When the GPIO signal (ON) is brought low, the PMOS transistor is turned on and its load is connected to the power supply (VIN). Because the PMOS has no controlled turn on, the voltage on the power supply decreases heavily due to the sudden demand for current. As the current ramps up to its final value, the voltage on VIN stabilizes. Figure 7 shows the stabilizing behavior of the PMOS Discrete circuit. The resistive load is removed and the capacitive load is left on the output when observing the magnitude of the inrush current. Figure 7. Inrush Current for PMOS Discrete Circuit #1 With only a small capacitance of 4.7 µF, the uncontrolled turnon manages to generate over 2 A of inrush current. As the output capacitance increases, the inrush current also increases at the same rate. Use Equation 1 to calculate inrush current. 4 Integrated Load Switches Versus Discrete MOSFETs SLVA716A–December 2015–Revised May 2019 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated www.ti.com PMOS Discrete Circuit #1 dV IC= ´ INRUSH LOAD dt where • IINRUSH = amount of inrush current caused by a capacitance • CLOAD = total capacitance • dV = change in voltage during ramp up • dt = rise time (during voltage ramp up) (1) This current can lead to input voltage decreases, power supply failure, or PCB trace damage. If the input voltage at the load switch becomes lower than expected, such as in the case of the MOSFET startup, then other modules or subsystems on the same power rail may reset because of a low input voltage and which transitions the system into an undesired state. For more information on the negative effects of inrush current, see the Managing Inrush Current Application Note. 2.2 Adding a Resistor to Slow the Output Rise Time A resistor is added to the gate of the PMOS to help slow down the rise time of the output voltage (and reduce the inrush current). This additional resistor limits the amount of current that charges or discharges the gate and turns the PMOS off or on. 3.3 V VIN VOUT 47 µF 4.7 µF 1 20 k 3.3 V ON Figure 8. PMOS Discrete Circuit #1 with a 20-kΩ Resistor on the PMOS Gate Figure 9 shows the effect of a 20-kΩ resistor on the gate of the PMOS. Figure 9. Turnon Behavior of PMOS Discrete Circuit #1 with a 20-kΩ Resistor on the PMOS Gate SLVA716A–December 2015–Revised May 2019 Integrated Load Switches Versus Discrete MOSFETs 5 Submit Documentation Feedback Copyright © 2015–2019, Texas Instruments Incorporated PMOS Discrete Circuit #1 www.ti.com With the 20-kΩ resistor added, the rise time increases. The power supply is now able to manage the inrush current without any significant voltage drop. While this resistance may work for the 4.7-μF load, a higher output capacitance requires a higher rise time and therefore more resistance on the gate. While adding resistance to the gate of the PMOS helps in increasing the rise time of the output, it also increases the fall time when the PMOS is turned off. This can be a disadvantage for systems which need the output load discharged quickly for faster system operation. 2.3 Vth Voltage Disadvantage Aside from
Recommended publications
  • Time Constant of an Rc Circuit
    ECGR 2155 Instrumentation and Networks Laboratory UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 10 – TIME CONSTANT OF AN RC CIRCUIT OBJECTIVES The purpose of this experiment is to measure the time constant of an RC circuit experimentally and to verify the results against the values obtained by theoretical calculations. MATERIALS/EQUIPMENT NEEDED Digital Multimeter DC Power Supply Alligator (Clips) Jumper Resistor: 20kΩ Capacitor: 2,200 µF (rating = 50V or more) INTRODUCTION The time constant of RC circuits are used extensively in electronics for timing (setting oscillator frequencies, adjusting delays, blinking lights, etc.). It is necessary to understand how RC circuits behave in order to analyze and design timing circuits. In the circuit of Figure 10-1 with the switch open, the capacitor is initially uncharged, and so has a voltage, Vc, equal to 0 volts. When the single-pole single-throw (SPST) switch is closed, current begins to flow, and the capacitor begins to accumulate stored charge. Since Q=CV, as stored charge (Q) increases the capacitor voltage (Vc) increases. However, the growth of capacitor voltage is not linear; in fact it is an exponential growth. The formula which gives the instantaneous voltage across the capacitor as a function of time is (−t ) VV=1 − eτ cS Figure 10-1 Series RC Circuit EXPERIMENT 10 – TIME CONSTANT OF AN RC CIRCUIT 1 ECGR 2155 Instrumentation and Networks Laboratory This formula describes exponential growth, in which the capacitor is initially 0 volts, and grows to a value of near Vs after a finite amount of time.
    [Show full text]
  • Switched-Capacitor Circuits
    Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto ([email protected]) ([email protected]) University of Toronto 1 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Opamps • Ideal opamps usually assumed. • Important non-idealities — dc gain: sets the accuracy of charge transfer, hence, transfer-function accuracy. — unity-gain freq, phase margin & slew-rate: sets the max clocking frequency. A general rule is that unity-gain freq should be 5 times (or more) higher than the clock-freq. — dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise. University of Toronto 2 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Double-Poly Capacitors metal C1 metal poly1 Cp1 thin oxide bottom plate C1 poly2 Cp2 thick oxide C p1 Cp2 (substrate - ac ground) cross-section view equivalent circuit • Substantial parasitics with large bottom plate capacitance (20 percent of C1) • Also, metal-metal capacitors are used but have even larger parasitic capacitances. University of Toronto 3 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Switches I I Symbol n-channel v1 v2 v1 v2 I transmission I I gate v1 v p-channel v 2 1 v2 I • Mosfet switches are good switches. — off-resistance near G: range — on-resistance in 100: to 5k: range (depends on transistor sizing) • However, have non-linear parasitic capacitances. University of Toronto 4 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Non-Overlapping Clocks I1 T Von I I1 Voff n – 2 n – 1 n n + 1 tTe delay 1 I fs { --- delay V 2 T on I Voff 2 n – 32e n – 12e n + 12e tTe • Non-overlapping clocks — both clocks are never on at same time • Needed to ensure charge is not inadvertently lost.
    [Show full text]
  • Switched Capacitor Concepts & Circuits
    Switched Capacitor Concepts & Circuits Outline • Why Switched Capacitor circuits? – Historical Perspective – Basic Building Blocks • Switched Capacitors as Resistors • Switched Capacitor Integrators – Discrete time & charge transfer concepts – Parasitic insensitive circuits • Signal Flow Graphs • Switched Capacitor Filters – Comparison to Active RC filters – Advantages of Fully Differential filters • Switched Capacitor Gain Circuits • Reducing the Effects of Charge Injection • Tradeoff between Speed and Charge Injection Why Switched Capacitor Circuits? • Historical Perspective – As MOS processes came to the forefront in the late 1970s and early 1980s, the advantages of integrating analog blocks such as active filters on the same chip with digital logic became a driving force for inovation. – Integrating active filters using resistors and capacitors to acturately set time constants has always been difficult, because of large process variations (> +/- 30%) and the fact that resistors and capacitors don’t naturally match each other. – So, analog engineers turned to the building blocks native to MOS processes to build their circuits, switches & capacitors. Since time constants can be set by the ratio of capacitors, very accurate filter responses became possible using switched capacitor techniques Æ Mixed-Signal Design was born! Switched Capacitor Building Blocks • Capacitors: poly-poly, MiM, metal sandwich & finger caps • Switches: NMOS, PMOS, T-gate • Op Amps: at first all NMOS designs, now CMOS Non-Overlapping Clocks • Non-overlapping clocks are used to insure that one set of switches turns off before the next set turns on, so that charge only flows where intended. (“break before make”) • Note the notation used to indicate time based on clock periods: ... (n-1)T, (n-½)T, nT, (n+½)T, (n+1)T ..
    [Show full text]
  • Printed Circuit Board Mount Switches Shock Proof • Waterproof • Explosion
    shock proof • waterproof • explosion proof Printed Circuit Board Mount Switches These versatile switches are a great choice for many applications due to their small size and variety of connection styles. Although these switches are built to connect to a printed circuit board, they can also be retrotted for nearly any application by connecting wire leads. These switches can sense a pressure ranging from 6 inches of water all the way up to 65 PSI. For a frame of reference, a trumpet player blows 55 inches of water (or 2 PSI) on average, so these switches have a broad range. They can also be used to sense a vacuum ranging between 6 inches of water to 65 inches of water. Therefore, these miniature single pole and double pole switches are used as pressure, vacuum, or dierential pressure switches where moderate accuracy is sucient. Presair switches deliver critical benefits: CSPSSGA - PC Mount Switch SAFE: Presair switches deliver complete electrical isolation with zero voltage at the actuator to shock the user or spark an explosion. 1”x1”x1.5” ECONOMICAL:Presair’s switching system costs are comparable or lower than digital controls meeting the needs of original equipment manufacturers. ACCURATE: All switches are 100% tested to meet 100,000+ cycle life. General Specification: RATING: 1 amp resistive 250 VAC Ratings are dependent on actuation pressure and must be derated at lower pressures. APPROVAL: UL Recognized, CUL Recognized. File #E80254 MATERIAL: Lower body: Rynite w/ pin terminals molded Upper body: Acetal Diaphram material is dependent on application. PRESSURE RANGE: When used as a pressure or vacuum switch the actuation point must be factory set.
    [Show full text]
  • Switched-Capacitor Integrator
    EE247 Lecture 10 • Switched-capacitor filters (continued) – Switched-capacitor integrators • DDI & LDI integrators – Effect of parasitic capacitance – Bottom-plate integrator topology – Switched-capacitor resonators – Bandpass filters – Lowpass filters – Switched-capacitor filter design considerations • Termination implementation • Transmission zero implementation • Limitations imposed by non-idealities EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 1 Switched-Capacitor Integrator C φ φ I φ 1 2 1 Vin - φ 2 Cs Vo + T=1/fs C C φ I φ I 1 2 Vin Vin - - C C s s Vo Vo + + φ High φ 1 2 High Æ C Charged to Vin s ÆCharge transferred from Cs to CI EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 2 Switched-Capacitor Integrator Output Sampled on φ1 φ φ 1 2 Vin CI φ - 1 Cs Vo Vo1 + φ φ φ φ φ Clock 1 2 1 2 1 Vin VCs Vo Vo1 EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 3 Switched-Capacitor Integrator ( (n-1)T n-3/2)Ts s (n-1/2)Ts nTs (n+1/2)Ts (n+1)Ts φ φ φ φ φ Clock 1 2 1 2 1 Vin Vs Vo Vo1 Φ 1 Æ Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI [(n-3/2)Ts] Φ 2 Æ Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-1) Ts] + Qs [(n-1) Ts] Φ 1 _Æ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts] Since Vo1= - QI /CI & Vi = Qs / Cs Æ CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ] EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H.
    [Show full text]
  • Practical Issues Designing Switched-Capacitor Circuit
    Practical Issues Designing Switched-Capacitor Circuit ECEN 622 (ESS) Fall 2011 Practical Issues Designing Switched-Capacitor Circuit Material partially prepared by Sang Wook Park and Shouli Yan ELEN 622 Fall 2011 1 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit MOS switch G G S Cov Cox Cov D S D Ron o Excellent Roff o Non-idea Effect Charge injection, Clock feed-through Finite and nonlinear Ron ELEN 622 Fall 2011 2 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Charge Injection G Qch1 Qch2 C VS o During TR. is turned on, Qch is formed at channel surface Qch = WLC OX (VGS −Vth ) When TR. is off, Qch1 is absorbed by Vs, but Qch2 is injected to C o Charge injected through overlap capacitor o Appeared as an offset voltage error on C ELEN 622 Fall 2011 3 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Charge Injection Effect CLK Ideal sw. Vout MOS sw. 0.1pF 1V CLK o When clock changes from high to low, Qch2 is injected to C o Compared to ideal sw., MOS sw. creates voltage error on Vout ELEN 622 Fall 2011 4 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Decrease Charge Injection Effect (1) CLK Vout W/L = 1/0.4 0.1pF 1V W/L = 10/0.4 o Decrease the effect of Qch o Use either bigger C or small TR. (small ratio of Cox/C) o Increased Ron ELEN 622 Fall 2011 5 / 27 Switched-Capacitor practical issues Practical Issues Designing Switched-Capacitor Circuit Decrease Charge Injection Effect (2) CLK CLKb 10/0.4 3.1/0.4 Vout With dummy sw.
    [Show full text]
  • Introduction How Circuit Protection Devices Work?
    Introduction Adding extra strain to any person or object can be a recipe for disaster. This is especially the case for electrical circuits. When they’re tasked with carrying more current than they were designed to handle, the added burden can lead to detrimental and dangerous circumstances. Not only could overloading your circuits damage or destroy your sensitive electronic equipment, but it could also generate extra heat in wires that weren’t meant to carry the load. If this happens, it can cause a fire in a matter of seconds. This is where an overcurrent protection device, such as a fused disconnect switch or a circuit breaker, comes in. Though they serve a similar purpose, these two components each have a unique design. Today, we’re sharing how they work and how to choose the right one for your project. Ready to learn more? Let’s dive in. How Circuit Protection Devices Work? The field of circuit protection technology is vast, designed to prevent circuits from risks associated with overvoltage, overcurrent, reverse-bias, electrostatic-discharge (ESD) and overtemperature events. Such risks include: • High-voltage transients • Capacitive coupling • Inductive kickback • Ground faults • High inrush currents From your smartphone battery to your steering wheel, these components are necessary to ensure safe and reliable electronics. While they all serve a valuable purpose, we’re delving deeper today into the specific field of overcurrent protection. Overcurrent protection devices are designed to disconnect or open a circuit quickly in the event that an overload or short-circuit occurs. This helps to mitigate any damage to the connected equipment and can also reduce the risk of electrical fires.
    [Show full text]
  • Power Sense Switch & Fan Control Thermostat
    Speed Controllers & Switches_8_DR_ref.qxd 6/11/2015 10:34 AM Page 17 POWER SENSE SWITCH & FAN CONTROL THERMOSTAT POWER SENSE SWITCH TYPE - VZ-IISNSE TECHNICAL DATA Switched Output Model Number Load Sense Range Max. Amps Enclosure Size, mm On = 2.5 - 15 amp VZ-ISNSE 5 153W x 110H x 60D Off = 0 - 1.5 amps SUGGESTED WIRING ARRANGEMENT The VZ-ISNSE is a 240V AC power sense switch that provides automatic on/off control of a fan or exhaust fan system. The unit detects the current of an appliance such as a clothes dryer, closing and opening the switched output 240V relay when the load sense range Switched Output parameters are met. Can be used with the VZ2-10TS, VZM0-28TS, VZ6-4PL or as a stand alone unit. In LED’s indicate when load is activated. 3-pin Socket Warning Not to be used with fans with EC motors Appliance or inverters. FAN CONTROL THERMOSTAT TECHNICAL DATA Model Temperature Maximum Number range Mounting Amps Dimensions, mm TFC6 5ºC to 30ºC Wall mountable 6.0 86W x 86H x 33D SELECTION TABLE The TFC6 is suitable for most 240-volt fans. The TFC6 can be set in two modes: Cool mode - will start the fan when the room temperature is higher than the set point. The Fantech Fan Control Thermostat has Heat mode - will start the fan when the room temperature is lower than the set point. been developed to control the operation of a 240-volt fan based on the setting made on the thermostat dial. It can be set to turn on a fan when the WIRING DIAGRAM room temperature is either higher or lower than the set point.
    [Show full text]
  • FSW Fuse-Switch-Disconnectors
    Motors | Automation | Energy | Transmission & Distribution | Coatings FSW Fuse-Switch-Disconnectors www.weg.net Fuse-Switch-Disconnectors The FSW Fuse-Switch-Disconnectors, developed according to International Standard IEC 60947-3 and bearing CE certification, are applied in electric circuits in general so as to provide the disconnection and protection against short circuits and overloads by means of NH blade contact fuses. In order to ensure a long lifespan, the FSW Fuse-Switch-Disconnectors are manufactured with reinforced thermoplastic materials and flame retardant. Additionaly, they feature contacts with silver coating, providing low power losses. Safety and Simplicity WEG switch-disconnector has several characteristics which aim at increasing security for operation and maintenance of the equipment, simplifying diagnoses and fuse replacement: g The switch-disconnector allows checking the state of the fuses through a transparent cover, besides featuring small openings which allow making electrical measurements without interrupting the operation. g As per IEC 60947-3, the switch-disconnector can perform the non- frequent opening under load. The FSW series has arc chambers for the extinction of the electric arc and disconnects all the phases together, ensuring full insulation between the load circuit and power supply. g In the opening of the switch-disconnector, the fuses remain fixed to the cover, preventing their drop or accidental contact between the energized parts. Furthermore, the cover is totally removable, allowing simple fuse replacement in a simple and safe area out of the electrical panel. g The switch-disconnectors also feature a built-in auxiliary contact in order to indicate when they are open or not properly closed.
    [Show full text]
  • Thermostats, Thermal Cutoffs & Fuses
    Temperature Controllers Bulb and Capillary Thermostats Thermostat Styles and Selection Construction Characteristics This type of control operates by expansion and contraction of causing the opening and closing of a snap-action switch. For heat- a liquid in response to temperature change. Liquid contained ing applications the contacts are normally closed and open on within the sensing bulb and capillary flexes a diaphragm, temperature rise. See Page 13-77 for typical wiring diagrams. Style A Style B Single-Pole Thermostat Bulb Double-Pole Thermostat ✴ General purpose ✴ Recommended for directly thermostat recommended Pilot Lamp controlling high wattage for most applications. (Optional on loads due to its Style B & ✴ Capable of controlling heavy duty contacts. C ONLY) loads from 120V/30A up ✴ Capable of controlling loads to 480V/20A Knob up to 30 Amps at 277 VAC and (Optional on 10 Amps at 480 VAC all Styles except F) Bezel Capillary (Optional on Style B & C ONLY Thermostat Electrical Ratings: Normally Closed Contacts, Open on Temperature Rise – Adjustable Stock Items Are Shown In RED Temp Ampacity at Bulb Bulb Capillary Thermostat Optional Thermostat Parts Instruction Control Range Line Voltage Dia. Length Length Part Sheet Type Style °F 120V 240V 277V 480V in in in Terminals Number Knob Bezel Pilot Lamp P/N 60–250 30 30 30 — 0.27 6.00 12 #10 screw TST-101-137 TST-104-103 n/a n/a IDP-119-102 60–250 30 30 30 — 0.38 4.63 48 #10 screw TST-101-131 TST-104-103 n/a n/a IDP-119-102 SPST A 70–245 30 30 15 15 0.25 5.50 12 #10 screw TST-101-130 Included
    [Show full text]
  • TCI-W-U Series Wall Mounted Controller IOM-525 Installation and Operation Manual Installation and Set up Overview
    TCI-W-U Series Wall Mounted Controller IOM-525 Installation and Operation Manual Installation and Set Up Overview Features......................................3 Duct Application............................4 Room Application...........................5 Wiring Schematics.....................6-12 Operation...............................13-14 Features Universal PID and/or binary control for any analog input/output signal and range. Multiple auxiliary functions: automatic enable, set point configuration Averaging, min and max functions Alarm monitoring of low and high limits Accuracy of +/- 2% RH Large Backlit display Displays Actual RH% and setpoint RH% Analog output displayed by a vertical bar Jumper selectable 0-10VDC or 4-20mA The Armstrong TCI-W-U controller can be used for either duct or room applications. 3 Duct Application The Armstrong D51772 is used in a duct application and includes the parts listed below: Armstrong Part number: D50390 (TCI-W-U Controller) Armstrong Part number: D50388 (SDC-H1 Transmitter) Please refer to your humidifiers IOM for proper placement of the D50388. (The D50388 will be referred to as a sensor in the IOM) The D50390 can be mounted in any location because the sensing of relative humidity is being done by the D50388. Max wire length from sensor to controller is 200 feet. 4 Room Application The Armstrong D51768 is a stand alone controller used in room applications, see below: Armstrong Part number: D51768 (TCI-W-U Controller) Please refer to your humidifiers IOM for mounting locations of the humidistat/controller as well as set up of the humidifier. This is only installation and set up for the controller. 5 Wiring Schematics HC6000 Series Humidifiers: Supply 2 24V Main Stat / Sensor In 6 A01 Modulating High Limit Sensor Armstrong 0-10 Vdc Stat Outdoor Temp.
    [Show full text]
  • Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant
    Sonoma State University Department of Engineering Science Fall 2017 EE110 Laboratory Introduction to Engineering & Laboratory Experience Lab 5 AC Concepts and Measurements II: Capacitors and RC Time-Constant Capacitors Capacitors are devices that can store electric charge similar to a battery (but with major differences). In its simplest form we can think of a capacitor to consist of two metallic plates separated by air or some other insulating material. The capacitance of a capacitor is referred to by C (in units of Farad, F) and indicates the ratio of electric charge Q accumulated on its plates to the voltage V across it (C = Q/V). The unit of electric charge is Coulomb. Therefore: 1 F = 1 Coulomb/1 Volt). Farad is a huge unit and the capacitance of capacitors is usually described in small fractions of a Farad. The capacitance itself is strictly a function of the geometry of the device and the type of insulating material that fills the gap between its plates. For a parallel plate capacitor, with the plate area of A and plate separation of d, C = (ε A)/d, where ε is the permittivity of the material in the gap. The formula is more complicated for cylindrical and other geometries. However, it is clear that the capacitance is large when the area of the plates are large and they are closely spaced. In order to create a large capacitance, we can increase the surface area of the plates by rolling them into cylindrical layers as shown in the diagram above. Note that if the space between plates is filled with air, then C = (ε0 A)/d, where ε0 is the permittivity of free space.
    [Show full text]