Nutrition&Brain Function

Total Page:16

File Type:pdf, Size:1020Kb

Nutrition&Brain Function FIRST IN A SERIES NUTRITION&BRAIN FUNCTION STEPHEN AUSMUS (D833-1) Food for the Aging Mind cientists know that certain nutrients protect the aging brain from problems with or actually count individual brain cells. and other key chemical compounds nerve cell signals involved in memory Behavioral tests that measure motor and S are essential to human brain and cognition? A clear-cut answer could cognitive skills—or lack thereof—are function. Serious deficiencies in greatly affect the 77 million baby boom- also providing insights. Yet the science of some of these, such as vitamin B12 and ers who are now facing retirement. Their nutrition and brain function is relatively iron, can lead to impaired cognitive independence, quality of life, and even new and evolving. function due to neurological, or nerve economic status will largely be defined by Agricultural Research Service scientists fiber, complications. their ability to traffic information signals at several locations nationwide are con- Cognition can be defined as the ability as they age. tributing to a growing body of research to use simple-to-complex information to In researching the nutrition-brain con- that explores the effect of diet and nutri- meet the challenges of daily living. nection, new technologies are being used, tion on the brain and its function across So, could careful attention to diet help such as those that take images of the brain the lifespan. 8 Agricultural Research/August 2007 424069.indd 8 7/5/07 9:24:06 AM Boosting Neuronal Function The brain’s billions of neurons “talk” ORAC Units* to one another through chemical neu- (micromole TE/ gram) rotransmitters that convey signals through neural pathways. These chemical trans- 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 porters—which include norepinephrine, serotonin, and dopamine—are key to Blueberries (1/2 cup or 72.5 grams) signal movement. Although people naturally lose brain cells throughout their lives, the process Black plum (1 plum or 66 grams) of neuronal death does not necessarily accelerate with aging. “There is a lot of individual difference,” says ARS neuro- Blackberries (1/2 cup or 72.5 grams) scientist James Joseph. “Loss of mental agility may be less due to loss of brain Raspberries (1/2 cup or 61.5 grams) cells than to the cells’ failure to commu- nicate effectively.” Joseph heads the Neuroscience Laboratory at the Jean Mayer USDA Strawberries (1/2 cup or 83 grams) Human Nutrition Research Center on Aging (HNRCA) at Tufts University in Boston. There, researchers are looking Sweet cherries (1/2 cup or 72.5 grams) at the beneficial effects of certain dietary plant compounds to learn how they affect brain function. Avocado (1/2 fruit or 86.5 grams) “Vitamins and minerals in plant foods provide protective antioxidants,” says Joseph. “But fruits, vegetables, nuts, Navel orange (1/2 fruit or 70 grams) seeds, and grains contain thousands of other types of compounds that contribute significantly to the overall dietary intake Red grapes (1/2 cup or 80 grams) of antioxidants. “A partial measure of the antioxidant ef- Source: USDA-ARS, Arkansas Children’s Research Center, Little Rock, AR, 2004 data. fect is called ‘ORAC,’ for Oxygen Radical Absorbance Capacity. ORAC scores are *ORAC units include both fat- and water-soluble values. Micromole TE/gram means the now showing up in charts and on some number of micromoles of Trolox, a vitamin E equivalent, per 1 gram weight of fresh fruit. food and beverage packages. They may be helpful in choosing foods to include in your diet.” Perhaps there is no better place in which Many in the series are groundbreaking age: It does, but at a much slower rate. to gauge the power of antioxidants than in that they challenge the long-accepted One of the first of Joseph’s studies, between the minute connections of the belief that the central nervous system, published in the Journal of Neuroscience, nerve cells. which includes the brain, is not capable of showed a protective effect of consuming regenerating itself. Other published studies antioxidants. Study rats were fed—from Bucking Long-Held Dogma in the series echo similar findings based on adulthood to middle age—vitamin E, Eight years ago, Joseph and colleagues primate and human brain research at the strawberry extracts, or spinach extracts, began publishing a series of studies, done Salk Institute for Biological Studies, San all with similar ORAC values. Animals in rodents, that shed light on the relation- Diego, California. Scientists there, using receiving the high-antioxidant diets did ship between various diets and the mecha- new technologies, disputed the notion that not experience the age-related cognitive nisms behind cognitive losses in specific the brain does not make new neurons—a performance losses seen in control rats neighborhoods of the aging brain. process called “neurogenesis”—into old fed standard chow. Agricultural Research/August 2007 9 424069.indd 9 7/3/07 10:06:39 PM STEPHEN AUSMUS (D835-1) A later study, also published in the Jour- levels of dopamine than were found in nal of Neuroscience, showed a reversal of the other groups. Dopamine has many functional loss among rats on special diets. functions within the brain. In particular, Each of three groups of rats, equivalent it can affect the way the brain controls in age to 63-year-old humans, was fed a movements. different high-antioxidant extract. A con- “We suspected that the combined anti- trol group was fed standard chow. After oxidant potency of compounds in blueber- 8 weeks—equivalent to about 10 years ry extract may have reduced inflammatory in humans—the rats’ performance levels compounds in the brains of these older were measured. animals,” says Joseph. “Inflammation The rats fed the spinach, strawberry, ordinarily contributes to neuronal and or blueberry extracts effectively reversed behavioral shortfalls during aging.” age-related deficits in neuronal and cogni- Tests have since shown that blueberry tive function. In addition, the blueberry- compounds cross the blood-brain barrier fed group far outperformed their peers and localize in rodent brain tissue. while traversing a rotating rod to test balance and coordination. Hard News: Brain Plaques “Despite their status as ‘senior citizens,’ Later, the lab’s researchers published those rats showed remarkable stamina on an Alzheimer’s disease model study in neuromotor function tests,” says psychol- Nutritional Neuroscience. They studied ogist and coauthor Barbara Shukitt-Hale, mice that carried a genetic mutation for also with the Neuroscience Laboratory. promoting increased amounts of amyloid Examination of the brain tissue of those beta, a protein fragment found within the blueberry-fed rats showed much higher telltale neuritic plaque, or “hardening of Biochemist Donna Bielinski prepares mammalian tissue samples to look for the ORAC Units* formation of new neurons , or neurogenesis. (micromole TE/ gram) Selected Vegetables and Nuts the brain,” seen in Alzheimer’s disease. Although the exact cause of Alzheim- 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 er’s is not completely understood, experts have recently identified one mechanism COOKED ARTICHOKE involving the insufficient breakdown (1 cup or 84 grams) and recycling of amyloid protein in the PECANS brain. That mechanism is both genetic (1 ounce or 28.4 grams) and physiological. In those individuals, normally harmless amyloid protein turns WALNUTS (1 ounce or 28.4 grams) into fragments of amyloid beta, which build up as plaque in the brain rather than RAW ASPARAGUS being escorted into cellular recycling. That (3/4 cup or 100 grams) action leads to cell death and weakened RED CABBAGE neuronal communication. (1/2 cup or 75 grams) In the mouse study, beginning at age 4 months—early adulthood—half the brain- RAW SPINACH (8 leaves or 80 grams) plaqued group was fed a diet that included blueberry extract for 8 months. The other WHITE CANNED POTATOES half was fed standard rat chow and so was (1/2 potato or 86.5 grams) a control group of mice that didn’t carry Source: USDA-ARS, Arkansas Children’s Research Center, Little Rock, AR, 2004 data. the amyloid-plaque mutation. At 12 months—early middle age—all *ORAC units include both fat- and water-soluble values. Micromole TE/gram means the groups were tested for their performance number of micromoles of Trolox, a vitamin E equivalent, per 1 gram weight of fresh fruit. in a maze. 10 Agricultural Research/August 2007 424069.indd 10 7/3/07 10:06:40 PM STEPHEN AUSMUS (D832-1) The brain-plaqued mice that were fed the blueberry extract performed as well as the healthy control mice and performed much better than their brain-plaqued peers fed standard chow. A look at the plaqued brains of both the blueberry-fed and chow-fed mice after death revealed no difference in the number of brain plaques in either group. “Amyloid-beta-induced plaques are only one aspect of Alzheimer’s disease,” says Joseph. “But the fact that we saw a diet- induced behavioral difference, despite a similarity in plaque density in both these animal groups, is significant.” The team found increased activity of a family of enzymes called “kinases” in the brains of the amyloid-plaqued mice that were fed blueberry extract. Two kinases found in particular, ERK and PKC, are important in mediating cognitive function, such as converting short-term memory to long-term. “These kinase molecules are involved in signaling pathways for learning and memory,” says Joseph. “It could be that the increased kinase activity within the plaque-ridden brains of the blueberry-fed mice enhanced the signaling in certain receptors.” Brain Cells Are Born ORAC scores of vegetables vary from plant to plant.
Recommended publications
  • Dietary Recommendations for the Prevention of Depression
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: https://www.tandfonline.com/loi/ynns20 Dietary recommendations for the prevention of depression R.S. Opie, C. Itsiopoulos, N. Parletta, A. Sanchez-Villegas, T.N. Akbaraly, A. Ruusunen & F.N. Jacka To cite this article: R.S. Opie, C. Itsiopoulos, N. Parletta, A. Sanchez-Villegas, T.N. Akbaraly, A. Ruusunen & F.N. Jacka (2017) Dietary recommendations for the prevention of depression, Nutritional Neuroscience, 20:3, 161-171, DOI: 10.1179/1476830515Y.0000000043 To link to this article: https://doi.org/10.1179/1476830515Y.0000000043 Published online: 02 Mar 2016. Submit your article to this journal Article views: 2048 View Crossmark data Citing articles: 15 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Dietary recommendations for the prevention of depression R.S. Opie1,2, C. Itsiopoulos1,2, N. Parletta2,3, A. Sanchez-Villegas2,4,5, T.N. Akbaraly2,6,7,8,9, A. Ruusunen2,10,11, F.N. Jacka2,12,13,14,15 1School of Allied Health, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia, 2International Society for Nutritional Psychiatry Research (ISNPR), Melbourne, Australia, 3Sansom Institute of Health Research, Division of Health Sciences, University of South Australia, Adelaide, Australia, 4Nutrition Research Group, Research Institute of Biomedical and Health Sciences,
    [Show full text]
  • Episodic Memory in Transient Global Amnesia: Encoding, Storage, Or Retrieval Deficit?
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.66.2.148 on 1 February 1999. Downloaded from 148 J Neurol Neurosurg Psychiatry 1999;66:148–154 Episodic memory in transient global amnesia: encoding, storage, or retrieval deficit? Francis Eustache, Béatrice Desgranges, Peggy Laville, Bérengère Guillery, Catherine Lalevée, Stéphane SchaeVer, Vincent de la Sayette, Serge Iglesias, Jean-Claude Baron, Fausto Viader Abstract evertheless this division into processing stages Objectives—To assess episodic memory continues to be useful in helping understand (especially anterograde amnesia) during the working of memory systems”. These three the acute phase of transient global amne- stages may be defined in the following way: (1) sia to diVerentiate an encoding, a storage, encoding, during which perceptive information or a retrieval deficit. is transformed into more or less stable mental Methods—In three patients, whose am- representations; (2) storage (or consolidation), nestic episode fulfilled all current criteria during which mnemonic information is associ- for transient global amnesia, a neuro- ated with other representations and maintained psychological protocol was administered in long term memory; (3) retrieval, during which included a word learning task which the subject can momentarily reactivate derived from the Grober and Buschke’s mnemonic representations. These definitions procedure. will be used in the present study. Results—In one patient, the results sug- Regarding the retrograde amnesia of TGA, it gested an encoding deficit,
    [Show full text]
  • Mnemonics in a Mnutshell: 32 Aids to Psychiatric Diagnosis
    Mnemonics in a mnutshell: 32 aids to psychiatric diagnosis Clever, irreverent, or amusing, a mnemonic you remember is a lifelong learning tool ® Dowden Health Media rom SIG: E CAPS to CAGE and WWHHHHIMPS, mnemonics help practitioners and trainees recall Fimportant lists (suchCopyright as criteriaFor for depression,personal use only screening questions for alcoholism, or life-threatening causes of delirium, respectively). Mnemonics’ effi cacy rests on the principle that grouped information is easi- er to remember than individual points of data. Not everyone loves mnemonics, but recollecting diagnostic criteria is useful in clinical practice and research, on board examinations, and for insurance reimbursement. Thus, tools that assist in recalling di- agnostic criteria have a role in psychiatric practice and IMAGES teaching. JUPITER In this article, we present 32 mnemonics to help cli- © nicians diagnose: • affective disorders (Box 1, page 28)1,2 Jason P. Caplan, MD Assistant clinical professor of psychiatry • anxiety disorders (Box 2, page 29)3-6 Creighton University School of Medicine 7,8 • medication adverse effects (Box 3, page 29) Omaha, NE • personality disorders (Box 4, page 30)9-11 Chief of psychiatry • addiction disorders (Box 5, page 32)12,13 St. Joseph’s Hospital and Medical Center Phoenix, AZ • causes of delirium (Box 6, page 32).14 We also discuss how mnemonics improve one’s Theodore A. Stern, MD Professor of psychiatry memory, based on the principles of learning theory. Harvard Medical School Chief, psychiatric consultation service Massachusetts General Hospital How mnemonics work Boston, MA A mnemonic—from the Greek word “mnemonikos” (“of memory”)—links new data with previously learned information.
    [Show full text]
  • Memory Reconsolidation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology Vol 23 No 17 R746 emerged from the pattern of amnesia consequence of this dynamic process Memory collectively caused by all these is that established memories, which reconsolidation different types of interventions. have reached a level of stability, can be Memory consolidation appeared to bidirectionally modulated and modified: be a complex and quite prolonged they can be weakened, disrupted Cristina M. Alberini1 process, during which different types or enhanced, and be associated and Joseph E. LeDoux1,2 of amnestic manipulation were shown to parallel memory traces. These to disrupt different mechanisms in the possibilities for trace strengthening The formation, storage and use of series of changes occurring throughout or weakening, and also for qualitative memories is critical for normal adaptive the consolidation process. The initial modifications via retrieval and functioning, including the execution phase of consolidation is known to reconsolidation, have important of goal-directed behavior, thinking, require a number of regulated steps behavioral and clinical implications. problem solving and decision-making, of post-translational, translational and They offer opportunities for finding and is at the center of a variety of gene expression mechanisms, and strategies that could change learning cognitive, addictive, mood, anxiety, blockade of any of these can impede and memory to make it more efficient and developmental disorders. Memory the entire consolidation process. and adaptive, to prevent or rescue also significantly contributes to the A century of studies on memory memory impairments, and to help shaping of human personality and consolidation proposed that, despite treat diseases linked to abnormally character, and to social interactions.
    [Show full text]
  • Eating on Purpose 1__1__1__1__1
    EATING ON PURPOSE: CREATING RECIPES FROM THE SCIENTIFIC EFFECTS OF FOOD ON THE MIND AND BODY Thesis Supervisor: ________________________________ Dhiraj Vattem, Ph.D. Department of Family and Consumer Sciences Second Reader: __________________________________ Sylvia Crixell, Ph.D. Department of Family and Consumer Sciences Approved: ____________________________________ Heather C. Galloway, Ph.D. Director of the University Honors Program EATING ON PURPOSE: CREATING RECIPES FROM THE SCIENTIFIC EFFECTS OF FOOD ON THE MIND AND BODY HONORS THESIS Presented to the Honors Committee of Texas State University-San Marcos in Partial Fulfillment of the Requirements for Graduation in the University Honors Program by Karissa Michelle Reiter San Marcos, Texas May 2011 Abstract The industrial revolution introduced significant advances in the healthcare system, extending average life expectancy through the elimination or control of acute diseases. However, our food system was industrialized as well, replacing fresh foods with processed food products and omega-3 with omega-6 fatty acids in the diet, aggravating chronic disease. As interest the relationship between nutrition and health has risen among scientific study and in the public, the benefits of eating particular foods has become a hot topic in the media. However, media claims tend to be suggestive and lacking in hard evidence, so my project became an investigation of these suggestions for efficacy in peer-reviewed journal articles. I then compiled the scientific evidence for the effects of food on the mind and body and created purposeful recipes for the conscious eater. Eating on Purpose Nutritional neuroscience is the scientific examination of the relationships between human behavior and nutrition (Lieberman 2005).
    [Show full text]
  • NUTB 243 – Nutrition, Brain & Behavior
    NUTB 243 – Nutrition, Brain & Behavior Tufts University, Friedman School of Nutrition Science and Policy Fall 2020 Instructor: Grace E. Giles, PhD Contact Information: [email protected], Skype or Zoom by arrangement Graduate Credits: 1.5 Semester hour units (SHUs) Prerequisites: NUTB 205 and NUTB 305, or permission of instructor Course Description: This course examines the bidirectional relationship between food consumption and human behavior, i.e. how our dietary choices influence behavior and vice versa. The semester will be divided into two components: (1) how nutrition impacts the brain and behavior and (2) how cognitions impact food choice and intake. Topics to be discussed during the semester include how macronutrients (carbohydrate, protein, fat) and micronutrients (vitamins and minerals) influence brain function, as well as how we choose how much and what to eat, and in relation to normal and “disordered” eating. Course Objectives: ❖ Critically read peer-reviewed articles: By this point in your graduate career, you likely have experience reading and interpreting peer-reviewed articles. In this course, you will build on this skill by analyzing individual articles for strengths and weaknesses beyond those stated in the Discussion section, and learn how to synthesize the findings from a particular area of interest. ❖ Become a jack of all trades, and a master of one: In order to get a taste of the scope of research in the field of nutrition and behavior, you will read articles on a variety of topics, ranging from caffeine and cognitive performance to eating disorders and food restriction. You will also choose one topic you find interesting and delve into it in more depth.
    [Show full text]
  • Effect of Nutrition on Neurodegenerative Diseases. a Systematic Review
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: https://www.tandfonline.com/loi/ynns20 Effect of nutrition on neurodegenerative diseases. A systematic review Vittorio Emanuele Bianchi, Pomares Fredy Herrera & Rizzi Laura To cite this article: Vittorio Emanuele Bianchi, Pomares Fredy Herrera & Rizzi Laura (2019): Effect of nutrition on neurodegenerative diseases. A systematic review, Nutritional Neuroscience, DOI: 10.1080/1028415X.2019.1681088 To link to this article: https://doi.org/10.1080/1028415X.2019.1681088 Published online: 04 Nov 2019. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ynns20 NUTRITIONAL NEUROSCIENCE https://doi.org/10.1080/1028415X.2019.1681088 REVIEW Effect of nutrition on neurodegenerative diseases. A systematic review Vittorio Emanuele Bianchi a, Pomares Fredy Herrerab and Rizzi Laurac aEndocrinology and Metabolism, Clinical Center Stella Maris Falciano, Falciano, San Marino; bDirector del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia; cMolecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy ABSTRACT KEYWORDS Neurodegenerative diseases are characterized by the progressive functional loss
    [Show full text]
  • Dietary Neurotransmitters: a Narrative Review on Current Knowledge
    nutrients Review Dietary Neurotransmitters: A Narrative Review on Current Knowledge Matteo Briguglio 1,* ID , Bernardo Dell’Osso 2,3, Giancarlo Panzica 4 ID , Antonio Malgaroli 5, Giuseppe Banfi 6, Carlotta Zanaboni Dina 1, Roberta Galentino 1 and Mauro Porta 1 1 Tourette’s Syndrome and Movement Disorders Centre, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; [email protected] (C.Z.D.); [email protected] (R.G.); [email protected] (M.P.) 2 Department of Pathophysiology and Transplantation, I.R.C.C.S. Ca’ Granda Foundation, Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] 3 Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA 4 Department of Neuroscience, Rita Levi Montalcini, University of Turin, 10126 Turin, Italy; [email protected] 5 Neurobiology of Learning Unit, Division of Neuroscience, Vita-Salute San Raffaele University, 20132 Milan, Italy; [email protected] 6 Scientific Direction, I.R.C.C.S. Galeazzi Hospital, 20161 Milan, Italy; banfi[email protected] * Correspondence: [email protected]; Tel.: +39-338-608-7042 Received: 13 April 2018; Accepted: 8 May 2018; Published: 13 May 2018 Abstract: Foods are natural sources of substances that may exert crucial effects on the nervous system in humans. Some of these substances are the neurotransmitters (NTs) acetylcholine (ACh), the modified amino acids glutamate and γ-aminobutyric acid (GABA), and the biogenic amines dopamine, serotonin (5-HT), and histamine. In neuropsychiatry, progressive integration of dietary approaches in clinical routine made it necessary to discern the more about some of these dietary NTs.
    [Show full text]
  • The Role of Polar Lipids in Brain & Cognitive Development
    The Role of Polar lipids in brain & cognitive development Pascal Steiner PhD March 10, 2020 Brain Development and Cognition Optimal brain development is a foundation for a prosperous and sustainable society Center for the Developing Child, HARVARD UNIVERSITY Cognitive Potential Promote Cognitive Development Support Cognitive Performance Lifelong Benefits Cognitive Performance Cognitive Infant/Child Adult Elderly 2 07.04.2020 Presentation Outline • Brain development and maturation • Importance of myelin formation for cognition • Role of polar lipids in brain and cognitive development 3 07.04.2020 Ramón y Cajal & the “neuron doctrine” (1891) STRUCTURE (1a) The brain is composed of discrete individual signaling elements (neurons) (1b) Information passes from neuron to neuron across gaps (synapses) (2) Information is polarized Ramón y Cajal (1893–1894) FUNCTION (3) “It is feasible that mental exercise leads to increase growth of neuronal branches and cell junctions (synapse)” SYNAPTIC PLASTICITY The brain is more than neurons Neuron • Neuron: information transmission and processing • Astrocyte: brain energy provider Blood vessel information transmission modulator Oligodendrocyte Astrocyte • Microglia: guardian of the brain Myelin • Oligodendrocyte: information transmission facilitator Synapse • Endothelial cell / pericyte: (blood vessels) Microglia filter/supplier 5 07.04.2020 • 90 billion neurons (100,000,000,000)3 • 100 billion non-neuron cells (100,000,000,000) • 1 quadrillion synapses (1,000,000,000,000,000) • 100 km of nerves • 600 km of blood vessels3 • Adult brain comprises 2% of total body weight but consumes 20% of total energy4 .1. Leuret and Gratiolet, 1854; 2. Kasthuri N, et al. Cell 2015;162:648–681; 3. Wong A, et al. Front Neuroengineering 2013;6:1–22; 4.
    [Show full text]
  • Cognitive Functions of the Brain: Perception, Attention and Memory
    IFM LAB TUTORIAL SERIES # 6, COPYRIGHT c IFM LAB Cognitive Functions of the Brain: Perception, Attention and Memory Jiawei Zhang [email protected] Founder and Director Information Fusion and Mining Laboratory (First Version: May 2019; Revision: May 2019.) Abstract This is a follow-up tutorial article of [17] and [16], in this paper, we will introduce several important cognitive functions of the brain. Brain cognitive functions are the mental processes that allow us to receive, select, store, transform, develop, and recover information that we've received from external stimuli. This process allows us to understand and to relate to the world more effectively. Cognitive functions are brain-based skills we need to carry out any task from the simplest to the most complex. They are related with the mechanisms of how we learn, remember, problem-solve, and pay attention, etc. To be more specific, in this paper, we will talk about the perception, attention and memory functions of the human brain. Several other brain cognitive functions, e.g., arousal, decision making, natural language, motor coordination, planning, problem solving and thinking, will be added to this paper in the later versions, respectively. Many of the materials used in this paper are from wikipedia and several other neuroscience introductory articles, which will be properly cited in this paper. This is the last of the three tutorial articles about the brain. The readers are suggested to read this paper after the previous two tutorial articles on brain structure and functions [17] as well as the brain basic neural units [16]. Keywords: The Brain; Cognitive Function; Consciousness; Attention; Learning; Memory Contents 1 Introduction 2 2 Perception 3 2.1 Detailed Process of Perception .
    [Show full text]
  • Evaluation of Dietary Intake in Children and College Students with and Without Attention-Deficit/ Hyperactivity Disorder
    Nutritional Neuroscience An International Journal on Nutrition, Diet and Nervous System ISSN: 1028-415X (Print) 1476-8305 (Online) Journal homepage: http://www.tandfonline.com/loi/ynns20 Evaluation of dietary intake in children and college students with and without attention-deficit/ hyperactivity disorder Kathleen F. Holton, Jeanette M. Johnstone, Elizabeth T. Brandley & Joel T. Nigg To cite this article: Kathleen F. Holton, Jeanette M. Johnstone, Elizabeth T. Brandley & Joel T. Nigg (2018): Evaluation of dietary intake in children and college students with and without attention- deficit/hyperactivity disorder, Nutritional Neuroscience, DOI: 10.1080/1028415X.2018.1427661 To link to this article: https://doi.org/10.1080/1028415X.2018.1427661 Published online: 23 Jan 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ynns20 Evaluation of dietary intake in children and college students with and without attention- deficit/hyperactivity disorder Kathleen F. Holton 1*, Jeanette M. Johnstone 2,3*, Elizabeth T. Brandley4, Joel T. Nigg 3 1Center for Behavioral Neuroscience, Department of Health Studies, American University, Washington, DC, USA, 2Department of Neurology, Oregon Health & Science University, Portland, OR, USA, 3Department of Child and Adolescent Psychiatry, Oregon Health & Science University, Portland, OR, USA, 4Department of Health Studies, American University, Washington, DC, USA Objectives: To evaluate dietary intake among individuals with and without attention-deficit hyperactivity disorder (ADHD), to evaluate the likelihood that those with ADHD have inadequate intakes. Methods: Children, 7–12 years old, with (n = 23) and without (n = 22) ADHD, and college students, 18–25 years old, with (n = 21) and without (n = 30) ADHD comprised the samples.
    [Show full text]
  • TITLE Prefrontal Cortex Neuromodulation Enhances Frontal
    TITLE Prefrontal cortex neuromodulation enhances frontal asymmetry and reduces caloric intake in patients with morbid obesity. AUTHOR NAMES AND AFFILIATIONS Laura Forcano a, b*, Marta Castellano c*, Aida Cuenca-Royo a, Albert Goday-Arnod, Antoni Pastor a, b, Klaus Langohr a, Olga Castañer a, b, Karla Alejandra Pérez-Vega e, Carme Serrad, Giulio Ruffini c, f, Miguel Alonso-Alonso g, Aureli Soria-Frisch c, Rafael de la Torre a, b a Integrative Pharmacology and Systems Neuroscience Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain. b CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain. c Starlab Barcelona SL, Barcelona, Spain d Morbid Obesity Care Unit, Hospital del Mar, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain. e Unit of Cardiovascular Risk and Nutrition, IMIM-Hospital del Mar Medical Research Institute Barcelona, Spain f Neuroelectrics Corporation, Cambridge, MA, USA gLaboratory of Bariatric and Nutritional Neuroscience, Center for the Study of Nutrition Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA * These authors contributed equally to this work Keywords: Morbid obesity, tDCS, neuromodulation, cognitive training, caloric intake Running title: Neuromodulation of dlPFC reduces caloric intake Corresponding author: Rafael de la Torre Hospital del Mar Medical Research Institute Neurosciences Program Integrative pharmacology and systems neuroscience group C/Doctor Aiguader, 88 Barcelona, 08003 Telephone: +34 93 316 Email: [email protected] Word count: 3990 Clinical trial registration: This trial is registered with ClinicalTrials.gov, number NCT03943979. AUTHOR CONTRIBUTIONS RT, ASF, GR, LF and AC contributed to the conception and design of the study.
    [Show full text]