Geologica Acta, Vol.10, Nº 1, March 2012, 49-62 DOI: 10.1344/105.000001703 Available online at www.geologica-acta.com

A 3D geological model of Campo de Cartagena, SE : Hydrogeological implications

1 1 2 2 J. JIMÉNEZ-MARTÍNEZ * L. CANDELA J.L. GARCÍA-ARÓSTEGUI R. ARAGÓN

1 Departament d’Enginyeria del Terreny, Cartogràfica i Geofísica, Universitat Politècnica de Catalunya (UPC) Jordi Girona 1-3, 08034 Barcelona, Spain. E-mail: [email protected]

2 Instituto Geológico y Minero de España, Murcia Office Avda. Miguel de Cervantes, 45, 30009, Murcia, Spain

* Corresponding author

ABSTRACT Knowledge and understanding of geologic basins for hydrogeologic purposes require an accurate 3D geological architecture representation. For model building, surface and subsurface data integration with the interpretation of geophysical survey and lithologic logs is needed. A methodology to reconstruct the geometric architecture of the sedimentary basin and relationships among stratigraphic formations, as well as to define hydrostratigraphic units, has been applied to the Campo de Cartagena Neogene formations. Data analysis included seismic reflection profiles and gravimetric data from oil exploration, electric resistivity surveys and 491 lithologic logs. The 3D model obtained from a close integration of stratigraphic and geophysical data was generated through a computer- based tool. It presents a common framework and a good starting point for hydrogeologic applications.

KEYWORDS Stratigraphy. Hydrostratigraphy. 3D visualization. Campo de Cartagena.

INTRODUCTION model assumptions greatly condition groundwater flow models and as a result may lead to incorrect outcomes In arid and semi-arid regions, water requirements (Robins et al., 2005). Also, the presence of heterogeneities for human and ecosystem needs are usually covered by in geological records, usually associated with facies existing aquifer resources. This fact implies an adequate changes, conditions groundwater hydrodynamics (Cabello management of the groundwater system, which first of all et al., 2007). Therefore, an accurate knowledge of the relies on a geologic formation and requires an accurate geological formations, geometrical aspects, spatial re- knowledge (Frind et al., 2002). A thorough understanding lationships among them, and of the presence of tectonic of the geological structure is essential for groundwater features that deform them is essential (Gámez, 2007). flow system characterisation and to draw up appropriate Although the analysis and representation of the geological strategies to expand the scope of water protection, and to architecture for hydrogeologic numerical models are often achieve a good ecological and chemical status (Directives made on a 2D basis, a 3D analysis is necessary to gain a 2000/60/EC and 2006/118/EC). Geological conceptual better understanding of complex geological systems.

49 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

Subsurface geophysical survey techniques constitute Betic Cordillera. The detrital sedimentary rocks are a powerful tool to determine the geometry of lithological unconformably laid over three metamorphic complexes formations, reducing the geologic uncertainty among wells that conform the Internal Zones of the cordillera. The and improving the 3D subsurface knowledge (Martelet et al., metamorphic complexes are from bottom to top: Nevado- 2004). A close integration of stratigraphic and geophysical Filábride, Alpujárride and Maláguide (Fig. 1). The Nevado- data helps to determine the presence of confining layers as Filábride Complex is mainly composed by marbles and well as of subsurface aquifers and aquitards. However, this mica-schists of Palaeozoic, Permian and Triassic age; is not an easy task, due to the heterogeneity of the data, it outcrops in the Cartagena-La Unión and Los Victorias and applications still represent a significant challenge to be mountain ranges to the South and West of the study area overcome (Ross et al., 2005). respectively (Ovejero et al., 1976; Manteca and Ovejero, 1992; Manteca et al., 2004). The Alpujárride Complex, The aim of this research is to establish the 3D subsurface outcropping in the Cartagena-La Unión and Carrascoy geometry and hydraulic relationship of the different aquifer mountain ranges (North), is composed by schists, marbles, units that form the Campo de Cartagena, by combining phyllites and quartzites of Permian and Triassic age (López- information provided by stratigraphic logs, geophysical Garrido et al., 1997; Sanz de Galdeano et al., 1997; García- data and surface geology. The Campo de Cartagena Tortosa et al., 2000a, b). Finally, the Maláguide Complex plain (SE of Spain), located in a semi-arid region where is formed by Permian and Triassic sandstones, quartzites, the primary land use is intensive irrigated agriculture silts, conglomerates and limestones and outcrops in the (Comunidad Autónoma de la Región de Murcia, 2008), is northern part of the area (García-Tortosa et al., 2000c). characterised by an intensive groundwater exploitation and man-made pollution. The established 3D geological model NE-SW to E-W normal faults rupture the bedrock, will provide a common initial framework for hydrogeologic developing several horst and graben structures, as the applications. Cabezo Gordo and Riquelme horsts or Torre Pacheco and San Javier grabens (Rodríguez Estrella, 1986; Rodríguez Estrella and Lillo, 1992). The block structure (horst and CAMPO DE CARTAGENA graben) is also observed in the Cartagena-La Unión mountain range (Robles-Arenas et al., 2006). During the Study area Tortonian, dacites and basalts flows, result of the volcanic eruption favoured by fractures as a consequence of the The Campo de Cartagena basin is a 1440km2 plain tectonic activity, were deposited in the Southern part of the with elevations ranging between sea level and 1065m.a.s.l. basin (Duggen et al., 2005). located in the South-eastern part of Mediterranean Spain (Fig. 1). To the South and East the area is limited by the The Neogene sedimentary rocks, with a thickness of Mediterranean Sea, and by low mountain ranges to the 2000m, are lightly folded by the settlement. Overlying the North and West. The region is characterised by a semi- Neogene sedimentary rocks, the Quaternary sediments arid Mediterranean climate, with an average temperature cover great part of the surface of Campo de Cartagena, of 18ºC and 300mm of annual rainfall which is unevenly which are affected by the recent tectonic activity at distributed into a few intense events that are highly variable local sites (Giménez, 1997). The sedimentary infill was in space and time. Rainfall is mainly produced during spring divided into stratigraphic units by several authors, based and autumn. Agriculture is the primary land use, with drip on studies made by oil companies, and summarized irrigation widely used in the region due to a scarcity of in Instituto Geológico y Minero de España (1994). To water resources and the need for water conservation. No establish hydrostratigraphic units in the present work, the permanent watercourse exists and the area is drained by new stratigraphic units redefined by Instituto Geológico several ephemeral streams. The population’s water supply y Minero de España (2005) according to litostratigraphic mainly relies on groundwater resources and the Tajo- and paleontologic criteria have been used (Table 1). The Segura water transfer, which transfer water from the Tajo observed stratigraphic variability and structural complexity basin (central Spain) to the study region and was initiated of the area has important implications for the conceptual in 1980. Water resources from private (owned by farmers) hydrogeological model establishment. desalination plants of brackish groundwater have greatly increased since 2005. Hydrogeological framework

Geological setting The sedimentary infill of the basin is mainly composed of detrital, low-permeability sediments (marls) with The area constitutes a Neogene and Quaternary interlayered high-permeability material (limestones, sands sedimentary basin located in the Eastern part of the and conglomerates) deposited during the Tortonian through to

Geologica Acta, 10(1), 49-62 (2012) 50 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

S-84-66NN S-84 M-2V -68N

5 2B

S-85-65 6 2A S-84-60 B 2E T-6 2D Spain 2C 2F 10

S S-84-55 -8 S-84-66S 5 Salin e - 1 Murcia Torrevieja

0 wetlan 0 4210000 S -8 S-85 12 5 d -9 -88 SMS· 2 S-85-96 8 S-85-61EMM 13 7 -15 11 S -85-94 A 9 SMS·1 S-8

5-92 S-84-5 14

6 1W S-8 5-6 8 B 3 N 4200000 4 S- S-86-65 -54 C S-8 S-82-50N BT-5 6 -90 E S-85 S-8 D S-85-63W -8 4-52 S 4 -8 F 4-64 .r. S-85-82 MM-12 Los Martínez S.P. Pinatar del Puerto

Carrasco y m 4190000 Cabezo GordoSan Javier

0 MM-1 S-82-51 M L S-85-57 G M-11 I 7 MM-14 Y (UTM) MM-9 K S-85-6 9 S-85-6 MM-13 S-85-59 MM-1 Torre Pacheco H S -63 Los Alcázares -86 S-85 J -

8 4180000

6 Fuente Álamom.r. Pozo Estrecho S MM-6 M -8 M- MM-4 S-86-84 6 -88 7 S-86-82 S-86-80 M -5 MM S-86-78 S-8 MM- ictorias S-84-58 3 2-50 Mediterranean Sea S-84-50 MM-2

S N Los V P O 4170000 La Unión Cartagena

Cartagena-La Unió n m.r. 4160000 0 10 20 km

650000 660000 670000 680000 690000 700000

X (UTM) Quaternary Maláguide Internal Betic Zones Pliocene Alpujárride (Basement) Miocene Nevado-Filábride Volcanic rocks Lithologic column P Cross-section Lithologic column MM-2 Seismic profile Urban area SMS·1/SMS· 2

FIGURE 1 Study area and geological sketch. Map location of seismic profiles, lithologic columns and cross-section locations. m.r.: mountain range. (Modified from IGME, 2005).

Geologica Acta, 10(1), 49-62 (2012) 51 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

TABLE 1 Campo de Cartagena geologic basin. Summary of stratigraphic and hydrostratigraphic units, formations, lithology and hydraulic properties of the Neogene and Quaternary sedimentary package. Modified from López-Bermúdez and Conesa-García (1990) and IGME (2005)

Stratigraphic Hydraulic Hydrostratigraphic Chronology Formations Lithology Observations units properties units Sand, silt, clay, conglomerate, Quaternary Q caliche and Aquifer Qt sandstone

Marl and evaporite Aquitard ULT Intra-Messinian “Loma erosive surface, Pliocene VI Sandstone Aquifer LT Tercia” unconformity with the unit V “El Espartal” Clay and sand Aquitard EE “Venta La Sandstone Aquifer VLV Messinian V Virgen” Evaporite and marl Aquitard LVLV Very local (thickness Oolitic limestone 40m) Aquifer UTLC IV “Torremendo- Marl and clay with Los intercalations of Variable thickness Aquitard TLC Late Carceles” limestone and sand Abundant fragments Tortonian “Columbares” Sandstone of echinoderms, Aquifer Co oysters, etc. “La Guardia Marl and clay with III intercalations of Aquitard LGC Miocene Civil” sand “Puerto Sandy limestone Aquifer PC Cadena” and conglomerate Marl with Influence of intercalations of “Atalaya” differential subsidence Aquitard At Serravallian II sand “Cresta del Conglomerate Aquifer CG Middle Gallo” Conglomerate and sandstone with thin Internal structures of Langian I “El Relojero” intercalations of cross stratification Aquifer ER marl Aquitanian- Early Burdigalian Basement

the Quaternary period. Sands and conglomerates of Tortonian conducted by public agencies and oil exploration companies age, organic limestones of Messinian and sandstones were not research-oriented. Useful information include a deposited during the Pliocene constitute the potential aquifer great number of published and unpublished reports, which materials. The Quaternary sediments are also detrital and are confidential to a greater or lesser extent, covering form the upper unconfined aquifer (Instituto Geológico y geologic mapping, geophysical data and geologic logs. Minero de España, 1994). Therefore, the hydrogeologic system is constituted by deep confined aquifers (Tortonian, To build the 3D subsurface geological and hydro- Messinian and Pliocene age) and a Quaternary unconfined geological model, a wide range of geophysical records shallow aquifer (Instituto Tecnológico y GeoMinero de based on measurement variations of the electrical properties España, 1991; Rodríguez Estrella, 1995). The deep aquifers of sub-soil materials Vertical Electrical Soundings (VES), are an important source of water, which is processed by Electrical Tomography Resistivity (ETR) and density, and private desalination plants mainly in the case of one of them lithological columns from well logs were compiled. The (Pliocene), while the unconfined aquifer is barely exploited geologic information was standardised according to the due to contamination by agrochemicals from irrigation return stratigraphic units and criteria (lithology, fossil content, etc) flows. High pumping rates from desalination plants, pollution defined by Instituto Geológico y Minero de España (2005) by agrochemicals, along with aquifers connected through and López-Bermúdez and Conesa-García (1990) (Table 1) poorly constructed wells (Jiménez-Martínez et al., 2011), to facilitate correlation between geologic boreholes and constitute the main hydrogeological problems in the area. geophysical data. The applied stratigraphic criteria and descriptions agree with those of other similar basins on the Mediterranean coast (Friend and Dabrio, 1996). Methodology and data gathering Geologic boreholes and stratigraphic logs The initial step was to carry out an intensive search of available literature, current investigations taking place in A total of 491 geologic borehole logs were collected the area and other sources of information. Many surveys for further stratigraphic examination and sedimentary

Geologica Acta, 10(1), 49-62 (2012) 52 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model SE N

NE S-85-82

S-84-58 MM-1 Fault Important reflectors (inside the units) Seismic boundaries Base Units I-II-III/ 5 top of the Basement Base Unit VI Base Unit V Base Unit IV UNIT I-II-III IV V UNIT V V IV IV UNIT UNIT 4 VI UNIT I-II-III UNIT UNIT I-III UNIT UNIT “Atalaya” UNIT “Columbares ” “T orremendo- Lo s C arceles ” 5 Formations “E l E spartal ”

“El Relojero ” “Puerto Cadena ” “Lom a Tercia” “La Guardía Civil”

“V enta La Virgen ” “Cresta del Gallo ” I-III 3 V IV VI 4 units I II MM-1 III

S84-58

Stratigraphic

Q .-BUR. AQT AG . LANGI E V. RV SER OTONIAN TORT ESNAN MESSINIA

EARLY LATE 3 MIDDLE

GRAPHIC SCALE (km) BASEMENT 2 MIOCENE

Chronology PLIOCENE 2 BASEMENT GRAPHIC SCALE (km) SE 1 SEISMIC PROFILE SEISMIC PROFILE 1 0 0 I-II I-II III III UNIT UNIT VI UNIT UNIT V V UNIT UNIT VI 5 UNIT UNIT VI 4 IV IV UNIT S85-82 I-III IV IV 3 UNIT UNIT

VV UNIT UNIT I-II-III UNIT UNIT

UNIT 2 GRAPHIC SCALE (km) 1 0 SEISMIC PROFILE V BASEMENT IV UNIT I-II-III UNIT UNIT SW NW 0 TIME 0 TIME 1000 (MILLISECOND) 1000 (MILLISECOND) NW 0 TIME 1000 (MILLISECOND) FIGURE 2 Serravalian). Burdigalian. LANG: Langhian, SERRV: Seismic reflection profiles: S-84-58 (Chevron, 1984); MM-1 (Sepesa, 1968); S-85-82 (Chevron, 1985) and geographic location. Modified fromAquitanian- IGME (2005). (AQT.-BUR.:

Geologica Acta, 10(1), 49-62 (2012) 53 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

basin reconstruction. Boreholes were mainly carried VES grouped into 5 profiles in a linear transect. Besides, in out for groundwater exploration purposes under rotary, November 2007, an ETR survey to assess the lateral extent percussion and percussion-rotary drilling where continuous of geologic formations at the Southern limit of the basin stratigraphic logs were rarely recorded. Borehole density was carried out (Jiménez-Martínez et al., 2008). A total of increases from inland towards the coast as well as in 6 profiles of apparent resistivity with a maximum length agricultural areas. The drilled depth for groundwater of 470m and a maximum exploration depth of 96m were exploration varies between a few meters up to 750m. Two obtained. wells for oil exploration reaching more than 1000m of depth (Ini-Coparex, 1967, 1970) through which loggings Gravimetric data were developed (self potential, resistivity, sonic log, gamma ray and neutron log), helped to improve the lithology The Bouguer anomaly reveals the presence of masses characterisation and hydraulic properties. Moreover, an with densities differing from earth average by large and additional borehole (982m deep) for deep brine injection local variations. A regional anomaly is due only to large- (Ramos and Sánchez, 2003) was also analysed. scale changes such as crustal thickening or thinning, while a residual anomaly expresses the presence of local rock Geophysical data bodies without the influence of changes in the crustal properties. The residual gravimetric anomalies constitute The following geophysical surveys were obtained and further analysed in order to understand the deep structure of the Campo de Cartagena basin: Seismic reflection profiles, CORE SMS·2 7 k m CORE SMS·1

VES, ETR (Loke and Barker, 1996; Loke, 2004), residual STRATIGRAPHY STRATIGRAPHY Age Unit and Bouguer gravimetric maps, and Thermal Remote Depth (m)

0 Age Unit Depth (m) Tomography (TRT) (Rolandi et al., 2008). Quaternary 0 50 S.L. 50

Seismic reflection profiles 100 100

Unit V 150

Sepesa (1968) and Chevron (1982, 1984, 1985, 1986) MESSINIAN 150 200 carried out a large number of seismic reflection studies in 200

250

the area. Only three of them (S-84-58; MM-1 and S-85- Unit VI 250

82) are shown in Fig. 2. Lengths of profiles are generally 300 300 greater than 10km and no spatial surface pattern is LATE MESSINIAN-PLIOCENE 350 observed. The maximum exploration was of 3000m, where 350 400

the MM survey (Sepesa, 1968) is less accurate than the S 400 ONIAN 450

survey (Chevron, 1982, 1984, 1985 and 1986). RT 450

500

Unit IVUnitIV Unit V 500 The processing and interpretation of reflection profiles MESSINIAN

550 UPPER TO

based on the analysis of the seismic signal against 550

UPPER RTONIAN

Unit IV travel time, considering models of velocity [double 600 TO 600 time (milliseconds) vs. depth] obtained from deep oil 650 650

exploration boreholes, provides estimates of the thickness, LOWER

700 TORTONIAN layering, depth and facies changes of geologic materials Unit III 700 750 besides basin boundary delineation. 750

800

800

ONIAN 850 TRIASSIC

For the identification of the different deeply buried Basement 850 geophysical units and basin structural and stratigraphic RT 900 information, data analysis followed the classical seismic Unit III 950 Clay limestone Silt-Clay (cemented)

procedure (i.e. reflection endings, erosional truncation, LOWER TO Limestone Marl-Silt onlap, downlap and configurations). 1000 Micro-conglomerate Siltstone

1050

Sandstone Conglomerate UPPER

Unit II Electrical resistivity profiles SERRAVALLIAN Marl 1100 Dolostone (basement) Gypsum Limestone (basement) The Instituto Geológico y Minero de España (1983) 1150

Basement TRIASSIC S.L.: Sea Water Level electrical resistivity measurements here analysed, a FIGURE 3 Stratigraphic correlation between SMS·1 (Ini-Coparex, continuation of a previous one developed in 1976 by 1967) and SMS·2 (Ini-Coparex, 1970) lithological columns. See loca- Instituto Geológico y Minero de España, consists of 150 tion in Figure 1.

Geologica Acta, 10(1), 49-62 (2012) 54 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

a useful tool to determine the geometry of geological Finally, 16 geo-referenced geological cross-sections formations (Duque et al., 2008). Residual and Bouguer integrating all reliable data, surface and subsurface anomaly maps were developed by Chevron Oil Company information (geological boreholes, seismic profiles, Spain during 1984-1986. Density variations between gravimetric data, VES and ETR), were used to build sediments and basement allowed the measurements a 3D model. Figure 4 shows the constructed diagram; interpretation in terms of shape, size and position of only lower boundaries of the stratigraphic units are subsurface structures (Instituto Tecnológico y GeoMinero presented. de España, 1989).

Geological model and hydrogeological Approach implications

The three-dimensional architecture of the basin was Geological model generated through a graphical interface (AutoCad®). The first step was the identification and definition The unconsolidated Quaternary sediments cover the of hydrostratigraphic units and the establishment of greater part of the Campo de Cartagena surface. Neogene geologic correlations among them, based on the Neogene rocks crop out in the Northern part of the study area stratigraphic units previously defined by Instituto and are slightly dipping under the Quaternary. They are Geológico y Minero de España (2005) and the Quaternary unconformably deposited over the basement materials and (López-Bermúdez and Conesa-García, 1990) (Table 1). present several open folds as a result of bedrock settlement Recorded information from the existing borehole data (Fig. 5). Neogene materials are also highly deformed base was not very useful due to the low quality (or by faults and joints, in some cases also affecting the absence) of geologic descriptions. This fact also made Quaternary. the establishment of correlation between them a complex task (Fig. 3). The geologic structure of the area is rather complex. Two principal grabens, Torre-Pacheco and San Javier, and Subsurface lithological changes and sediment thickness horsts, Cabezo Gordo (that crops out) and Riquelme, are estimation was further performed by a joint analysis of the most important structural features of the bedrock. The gravimetric and seismic profiles and lithological logs Torre-Pacheco sub-basin is characterised by the presence from well characterised boreholes (Fig. 2). Results from of two depocentres reaching a thickness of 2000m, VES and ETR also allowed a decrease in the subsurface located to the NW of Los Martínez village and a third uncertainties (geometry and lithology) between wells, depocentre with a thickness of 2300m located to the SW by providing geophysical records to assess stratigraphic of Los Alcazares. The San Javier sub-basin has only one correlation. It needs to be mentioned that in some VES, depocentre of 2000m thick located 5km to the NW of San the high salinity of water-bearing sediments, the presence Javier (Fig. 6). of paleo-groundwater, and man-made pollution, all contributed to compromising the final interpretation. The The relationship between sedimentary infill of presence of saline water overpowers the signal given by a Quaternary and Neogene age at the basin boundaries is lithology. mainly controlled by faults and basal unconformities. The “Cartagena-La Unión fault” (Manteca and García, 2001) and other existing structural features, together with the metamorphic rocks of the Cartagena-La Unión mountain range (Jiménez-Martínez et al., 2008), characterise the sedimentary basin’s Southern limit. A similar structural relationship with Los Victorias mountain range can be identified in the Western part (see section M Fig. 5). Presence of faults in the surroundings of Mar Menor (a hyposaline coastal lagoon) has been indicated by published works (Rodríguez Estrella, 1983, 1986, 2004; Rodríguez Estrella and Lillo, 1992, Rolandi et al., 2008), whilst further North at the basin contact with the Mediterranean Sea, they have not been observed. Regrettably, the presence of faults cannot be confirmed for FIGURE 4 Imported cross-sections are set as lines. The lines repre- sent the lower boundary of the stratigraphic units defined in Table 1 the present model due to the lack of seashore geological (white colour). The shoreline is shown in grey. and geophysical information.

Geologica Acta, 10(1), 49-62 (2012) 55 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model N 800 400 600 200 0 -400 -200 -600 -800 -1000 -1200 -1400 -1600 -1800 -2000

Depth (m) A B L P K 8 km N C E J O D Cabo Roig Aquifer I 6 M LT F U LT San Miguel Horst Qt G A EE

Z VLV 4 V VI

-Z IV H WETLAND Q LGC TORREVIEJA SALINE

2 SMS· 1 VLV RÍO NACIMIENTO FAULT

L 0 EE VLV RÍO SECO FAULT L Qt LT TLC LT U SMS·2 At LGC VI VLV L LT VLV U Q LT V IV LT Lithologic column Stratigraphic unit lower boundary U Cross-section B

VLV MAR MENOR VI VLV EE TLC V N LT Qt LT U Qt L LT U TLC LT Q ? (Horst) Co MOUNTAIN Qt CABEZO GORDO V VI Q Qt PC LGC P V K IV V VI TLC VI Q At CG N ER EE ?

e Horst J LT ESCALONA LT

m LT U Q VI V Hydrostratigraphic unit MOUNTAIN RANGE EE EE EE Aquifer Aquitard TLC Riquel Aquitard VLV M LT U LT Qt MOUNTAIN RANGE CAR TAGENA-LA UNIÓN Qt LT U TLC VLV Qt ? Q VI C V V CARTAGENA-LA UNIÓN FAULT EE ? ? LT V Unit IV VI V CAMPO DE CARTAGENA BASIN O VI ? Q VLV EE Basement Unit I-II-II I IV ? TLC Co ? EE D Stratigraphic unit LT Volcanic rocks ? TLC COLUMBARES ? VI MOUNTAIN RANGE ? Q ? ? LT ? V EE IV E VLV LT Qt L PELAYO TLC VLV ? LT VLV F U IV MOUNTAIN RANGE VI Qt G ? VILLARES Hydrostratigraphic unit MOUNTAIN RANGE ER Aquifer Aquitard Aquifer Aquifer Aquitard CG

Qt E LO S V ICTORIAS

MOUNTAIN RANGE

RANG

TO

AIN

IV E

LT VI

PUER RANG

TLC MOUNT At A

H AIN

Unit V AMUEL LA Unit VI

PC MOUNT Fence diagram of the stratigraphic and hydrostratigraphic units Campo de Cartagena basin. (see Table1).

e Quaternary Stratigraphic unit Fence diagram of the stratigraphic and hydrostratigraphic units Campo de Cartagena basin. (see Table1).

Shorelin FIGURE 5 FIGURE 5

Geologica Acta, 10(1), 49-62 (2012) 56 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

Hydrostratigraphic units hydrostratigraphic units, mainly of detrital origin, range from the Middle Miocene to the Quaternary. A summary From the data set analysis of the Neogene and of the associated stratigraphic formation; lithology and Quaternary sedimentary package and stratigraphic hydraulic characteristics are presented in Table 1. Aquifer units, eight hydrostratigraphic aquifer units (Qt; LT; unit areal extensions have been plotted in Figure 7; Table

VLV; UTCL; Co; PC, CG and ER) and six aquitard units 2 presents the principal geometric characteristics derived (ULT; EE; LVLV; TLC; LGC and At) were defined. The from this work and hydraulic properties obtained from

S S-84-66NN S- -84 B 5 T-6 6 2D 8 4- -6 2C 2F 68 0 10 N

S-84-66S Murcia

4210000 Torrevieja 800 S-8 12 600 1000 5-8 1000 1200 8 S-85-61EM 13 M 7 1400 -15 11 400 1200 9 600 1200

1000 400 14 1000 S-84-56 1400

4200000

0 5 200 N -85-61W 3 400 S S-86-61400 200 0 400 0 1200 60 800 60 80 1600 0 S 400 0 - 1400

10001200 1600 8 80 6 1400 1000 - n 1200 16009 18001600 600 1200 1800 S 0 0 1800-8 800 5-84 16 S-85-63W1400 2000 S 1400 0 800 - 200 1600 0 8 0 1000 2200 4- 64

1800 S-85-82 200 2000 60 MM-12 Los Martínez 0 1400 400 1600 San Javier del Puerto sub-basi 200

4190000 1 6 1200 1800 0 0

1800 0 400 San Javier 1600 1600

1200

1400 1400 1200 MM-10 800 S-82-51 MM-11 600 400 1000 1200 600 800 800 1000 800 Y (UTM) MM-14 800 1000 600 1000 1000 MM-9 400 1000 M-13 M 1000 -1 1200 1200 200 MM Torre Pacheco

1000 800 0 600 Los Alcázares 1200 1400 1 1000 0 4180000 Fuente Álamo 00 MM-6 1000 M M- MM- 1200 7 1400 0 0 0 4 Mar Menor 4 120 Mediterranean Sea 1000 1 1200 MM-5 1400 200 1800 S-8 2200 MM-3 S-84-58 2 200 -5 1000 400 600 MM-2 600 800 0

0 0 0 S 200 40 80 Torre-Pacheco 4170000 sub-basi n Cartagena 800 Isobaths basement

Normal fault 4160000 Urban area 0 10 20 km MM-3 Seismic profile 660000 670000 680000 690000 700000 710000

X (UTM)

Fence diagram of the stratigraphic and hydrostratigraphic units Campo de Cartagena basin. (see Table1). FIGURE 6 Campo de Cartagena basin, isobaths of the Mesozoic basement. The two sub-basins (Torre-Pacheco and San Javier) with the existing depocentres are clearly observed (Modified from IGME, 2005). FIGURE 5

Geologica Acta, 10(1), 49-62 (2012) 57 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

Qt LT CG, PC and Co aquifer units below the Campo de Cartagena

Cabo Roig aquifer coastal plain is not known accurately as they also show lateral facies changes among them. Their presence appears to be limited to some lithological columns and small N reflections detected in the seismic profiles (Fig. 7). For the aquifer units PC and Co, respectively, lateral facies changes are observed to the centre of the basin, as illustrated in the H and C cross-sections (Fig. 5). All aquifer units pinch out towards the SE of the area. VLV ER CG PC Co Within stratigraphic unit IV, a local aquifer unit of

approximately 40m thickness, UTLC, composed of oolitic limestone, has also been identified.

The stratigraphic unit V presents a single aquifer unit, VLV, constituted by sandstone which is only present in the mid-North of Campo de Cartagena. The VLV unit 0 10 20 km presents two different lower aquitards depending of the sub-basin: the L unit in the San Javier sub-basin, FIGURE 7 Surface spatial extension for the Qt, LT, VLV and jointly ER, VLV CG, PC and Co aquifer units have been mapped. The dashed line and the TLC unit in the Torre-Pacheco sub-basin. The represents either an unknown unit border or a lateral facies change, in Cabezo Gordo horst crops out in the Southern part the Qt aquifer unit it constitutes the groundwater boundary. of the VLV aquifer unit surface extension, formed by marbles and limestone of the basement. The hydraulic connection between the aquifers and the basement previous works (Instituto Geológico y Minero de España, materials is unknown. To the East, the unit is dipping 1994) and pumping test analyses (Rodríguez-Estrella et al. under the Mediterranean Sea, but neither geologic, 2004; unpublished data) for each defined unit. It needs to structural nor stratigraphic information exists. The VLV be mentioned that due to the remarkable spatial variability aquifer unit has not been observed in the mid-South of of the geologic media, those values must be considered in the study area (Fig. 7). This fact supports the structural many cases as punctual estimates. control by a fault hypothesis stated in previous works (Instituto Tecnológico y GeoMinero de España, 1989, In the I-III stratigraphic unit, four aquifer units are 1991, Instituto Geológico y Minero de España, 1994); distinguished from bottom to top: ER, conglomerate and the movement along the fault would move down the VLV sandstone; CG, conglomerate; PC, sandy limestone and aquifer unit to the mid-South of Campo de Cartagena. conglomerate; Co, sandstone. The areal extent of the ER, As the fault has not been detected neither in the S-84-

TABLE 2 Information required for numerical modelling of the Campo de Cartagena hydrostratigraphic units. Ss: Storage coefficient/formation thick- ness (IGME, 1994; Rodríguez Estrella et al., 2004; Jiménez-Martínez, personal communication) TABLE 2. Out Hydraulic Specific cropping Total surface Depth* Thickness Specific yield Effective porosity Total porosity conductivity storage surface Stratigraphic Hydrostratigraphic 2 2 -1 -1 Type (km ) (km ) (m) b (m) K (m d )Ss (m )Sy me Ø Observations Unit Unit known Top/ Average [max./ Av. [min./ (optimistic Av. [max./ min.] Av. [min./ max.] Av. [min./ max.] Bottom [max.] min.] max.] scenario)

Q Qt aquifer 1135 1135 0/50 55 [150] 0.5 [10+3/10-6] - 0.2 [0.1/0.4] 0.23 [0.1/0.4] 0.4 [0.15/0.6]

ULT aquitard - - 50/85 60 [110] - - - - - VI LT aquifer 22 817 85/130 30 [110] 8 [10+1/10-4] [10-4/10-6] - 0.25 [0.1/0.4] 0.3 [0.035/0.38] Fractured EE aquitard - - 130/195 90 [180] - - - - - VLV aquifer 28 570 195/315 125 [240] 6.5 [10+1/10-5] [10-4/10-6] - 0.19 [0.01/0.4] 0.3 [0.05/0.5] Fractured V LVLV aquitard ------

UTLC aquifer - - - -[40] - - - - - Very local IV TLC aquitard - - 315/- -[800] - - - - - Co aquifer LGC aquitard Lateral facies PC aquifer 25** 43 (230)** - 90 [200]** - - - 0.24 [0.1/0.4]** - changes I-II-III At aquitard 70 between CG aquifer aquifer units ER aquifer *Central part of the basin. **Average value for all aquifer hydrostratigraphic units.

Geologica Acta, 10(1), 49-62 (2012) 58 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

58 seismic profile (Chevron, 1984) (Fig.3) nor in cross- For the Campo de Cartagena basin, the integration of a section G (Fig. 5), and given the lack of information large dataset of geophysical surveys and lithological logs supporting the tectonic feature, the authors consider a has allowed a detailed geometric definition of aquifer and lateral facies change to be the best explanation. aquitard units. Data analysis has provided new insights for reducing the uncertainty associated with basin geometry Stratigraphic unit VI presents a single aquifer unit, LT, characterisation and geologic heterogeneities, previously constituted by sandstone. The LT aquifer unit practically defined in other studies as tectonic features and more covers the entire area of Campo de Cartagena (Fig. 7), recently in this work many of them as lateral facies except in the surroundings of Los Victorias mountain changes. The implications are obvious. For a more precise range (Western area, see cross-section M in Fig. 5), where geologic interpretation and, in consequence, a more sandstone changes to silt, clay and conglomerate (Mora accurate hydrogeological model, lateral facies changes are Cuenca et al., 1988). The hydraulic relation with Cabezo the basis for the understanding of the system. Results also Gordo horst and Los Victorias mountain range (partially allowed establishing the principal differences between the formed by marbles and limestone) is unknown. At the San Javier and Torre-Pacheco sub-basins. North-eastern part, the LT aquifer unit is hydraulically disconnected from the rest of the unit and it is named In the Campo de Cartagena basin there are multiple Cabo Roig aquifer (Fig. 7). The Mar Menor boundary is aspects that still require a more detailed study. Offshore conformed by faults which may act as hydraulic barriers data, for the VLV and LT aquifer units continental and avoiding seawater intrusion in the aquifer (Rodríguez marine data correlation, are needed for assessing aquifer- Estrella, 1983, 1986, 2004; Rodríguez Estrella and Lillo, sea connection and vulnerability to seawater intrusion due 1992; Rolandi et al., 2008). Further to the North, in contact to natural or pumping conditions along the entire shoreline. with the Mediterranean Sea, the presence of faults has not As observations are incomplete, a deeper investigation of been detected. the Cartagena-La Unión Southern boundary mechanisms, that may increase the aquifer potential risk to heavy Finally, stratigraphic unit Q, Qt aquifer unit, crops metals and sulphurs contamination from the abandoned out over almost the entire Campo de Cartagena area. It mining area, is necessary. Finally, relationships between constitutes the upper unconfined aquifer (Fig. 7), receiving the Neogene sedimentary package aquifer units and natural recharge from precipitation and by irrigation return the basement, and the areal extension of aquifer units flow. To the Southern border, geometric relationships beneath the Campo de Cartagena plain, require a thorough between the Qt aquifer unit and the Cartagena-La Unión investigation. mountain range (derelicted mining area) present structural features similar to Neogene materials (faults and basal The obtained results on aquifer geometry and hydraulic unconformities). However, the hydraulic connection still parameters constitute a good starting point to all kind remains unknown, a potential risk of pollution by heavy of future hydrogeologic studies raised in the Campo metals and sulphurs may exist (García, 2004; Robles- de Cartagena basin: to redesign the groundwater level Arenas and Candela, 2010). and quality monitoring network; numerical flow and agrochemical contaminants transport model. The applied approach and the sedimentological aspects shown in Conclusions this paper may be transferred to similar Neogene basins existing in the circum-Mediterranean area. Representation and analysis of geological architecture for specific applied research, such as groundwater modelling, are often simplistic approximations of real ACKNOWLEDGMENTS aquifer geometry. Generally, numerical model restrictions condense or simplify details. However, a detailed 3D This work has been developed under the framework of the basin study analysis integrating more interrelated CGL-2004-05963-C04-01 and CGL2007-66861-C04-03 research concepts from different disciplines is necessary to gain projects, financed by Ministry of Science and Innovation (Spain). a better understanding of geological systems. To build It is also included within the 08225/PI/08 research project financed the stratigraphic architecture of the basins, to identify by “Programa de Generación del Conocimiento Científico de the potential aquifer formations and to discuss the Excelencia” of Fundación Séneca, Región de Murcia (II PCTRM relationship between aquifer formations and the bedrock, 2007-10). Gratitude is expressed to A. Pedrera (Geological both geophysical and geological information and well-log Survey of Spain) and D. Collins (Kansas Geological Survey), data are the basic tools. Integration of applied geophysical as well as the reviewers E.O. Frind (University of Waterloo) and techniques with stratigraphic data allows a more accurate C. Duque (University of Copenhagen) for helpful comments on prediction of changes in subsurface geology. the paper.

Geologica Acta, 10(1), 49-62 (2012) 59 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

REFERENCES García, C., 2004. Impacto y riesgo ambiental de los residuos minero-metalúrgicos de la Sierra de Cartagena-La Unión Cabello, P., Cuevas, J.L., Ramos, E., 2007. 3D modelling of grain (Murcia-España). Doctoral Thesis. Polytechnical University size distribution in Quaternary deltaic deposits (Llobregat of Cartagena, Cartagena, Spain, 424pp. Delta, NE Spain). Geologica Acta, 5(3), 231-244. García-Tortosa, F.J., López-Garrido, A., Sanz de Galdeano, Comunidad Autónoma de la Región de Murcia (CARM), 2008. C., 2000a. Las unidades de Cabo Tiñoso y Peñas Blancas: Consejería de Agricultura y Agua de la Región de Murcia. Revisión y caracterización estratigráfica de las unidades Agrarian Statistics Data. Cited 1 September 2009. Website: alpujárrides del sector entre Mazarrón y Cartagena (Murcia, http://www.carm.es. España). Estudios Geológicos, 56, 31-40. Chevron (Chevron Oil Company of Spain), 1982. S-82 Seismic García-Tortosa, F.J., López-Garrido, A., Sanz de Galdeano, C., Survey. Fondo Documental del Archivo de Hidrocarburos 2000b. Las unidades alpujárrides y maláguides entre Cabo del Ministerio de Industria, Turismo y Comercio. Spanish Cope y Cabo de Palos (Murcia, España). Geogaceta, 28, 67- Government, Madrid, Spain, unpublished. 70. Chevron (Chevron Oil Company of Spain), 1984. S-84 Seismic García-Tortosa, F.J., López-Garrido, A., Sanz de Galdeano, C., Survey. Fondo Documental del Archivo de Hidrocarburos 2000c. Présence du complexe tectonique Malaguide à l’est del Ministerio de Industria, Turismo y Comercio. Spanish de Carthagène (zone interne Bétique, Espagne). Comptes Government, Madrid, Spain, unpublished. Rendus de l’Académie des Sciences. Paris, Sciences de la Chevron (Chevron Oil Company of Spain), 1985. S-85 Seismic Terre et des Planètes. Earth and Planetary Sciences, 330, 139- Survey. Fondo Documental del Archivo de Hidrocarburos 146. del Ministerio de Industria, Turismo y Comercio. Spanish Giménez, J., 1997. Quantificació de les deformacions verticals Government, Madrid, Spain, unpublished. recents a l’Est de la Península Ibèrica a partir d’anivellaments Chevron (Chevron Oil Company of Spain), 1986. S-86 Seismic topogràfics de precisió. Doctoral Thesis. Barcelona (Spain), Survey. Fondo Documental del Archivo de Hidrocarburos University of Barcelona, 364pp. del Ministerio de Industria, Turismo y Comercio. Spanish Instituto Geológico y Minero de España (IGME), 1983. Campaña Government, Madrid, Spain, unpublished. de prospección geofísica en el Campo de Cartagena (Murcia). Duggen, S., Hoernle, K., van den Bogaard, P., Garbe-Schönberg, Sondeos Eléctricos Verticales. Technical report. Madrid D., 2005. Post-Collisional Transition from Subduction to (Spain), Geological Survey of Spain, unpublished, 50pp. Intraplate-type Magmatism in the Westernmost Mediterranean: Instituto Geológico y Minero de España (IGME), 1994. Las aguas Evidence for Continental-Edge Delamination of Subcontinental subterráneas del Campo de Cartagena (Murcia). Geological Lithosphere. Journal of Petrology, 46(6), 1155-1201. Survey of Spain, Madrid, Spain, 62pp. Duque, C., Calvache, M.L., Pedrera, A., Martín Rosales, Instituto Geológico y Minero de España (IGME), 2005. Estudio W., López-Chicano, M., 2008. Combined time domain de la información geológica y geofísica del subsuelo (sísmica electromagnetic soundings and gravimetry to determine de reflexión y sondeos) en el sector SE de la Provincia de marine intrusion in a detrital coastal aquifer (Southern Spain). Murcia. Consejería de Industria y Medio Ambiente de la Journal of Hydrology, 349, 536-547. Región de Murcia, Technical report. Geological Survey of European Commission. 2000. Directive 2000/60/EC of the Spain, Murcia, Spain, unpublished, 37pp and Annex 1-37. European Parliament and of the Council of 23rd October Instituto Nacional de Indústria-Compagnie de Participations de 2000 establishing a framework for Community action in the Recherches et d’Exploitations Pétrolières (Ini-Coparex), field of water policy. Official Journal 22 December L 327/1. 1967. San Miguel de Salinas 1 Borehole. Fondo Documental European Commission: Brussels. del Archivo de Hidrocarburos del Ministerio de Industria, European Community, 2006. Directive 2006/118/EC of the Turismo y Comercio. Spanish Government, Madrid, Spain, European Parliament and of the Council of 12 December unpublished. 2006 on the protection of groundwater against pollution Instituto Nacional de Indústria - Compagnie de Participations and deterioration. Official Journal 12 December L 372/19. de Recherches et d’Exploitations Pétrolières (Ini-Coparex), European Commission: Brussels. 1970. San Miguel de Salinas 2 Borehole. Fondo Documental Friend, P.J., Dabrio, D.J., 1996. Tertiary basins of Spain: the del Archivo de Hidrocarburos del Ministerio de Indústria, stratigraphic record of crustal kinematics. Cambridge Turismo y Comercio. Spanish Government, Madrid, Spain, University Press, New York, USA, 400pp. unpublished. Frind, E.O., Muhammad, D.S., Molson, J.W., 2002. Delineation Instituto Tecnológico y GeoMinero de España (ITGE), 1989. of three dimensional well capture zones for complex multi- Geometría de los acuíferos del Campo de Cartagena (Murcia). aquifer systems. Ground Water, 40(6), 586-598. Volume 1/3 Memory. Volume 2/3 Maps. Volume 3/3 Annex: Gámez, D., 2007. Sequence stratigraphy as a tool for water inventario de puntos de agua. Technical report. Geological resources management in alluvial coastal aquifers: application Survey of Spain, Madrid, Spain, unpublished, 80pp. to the Llobregat delta (Barcelona, Spain). Doctoral Thesis. Instituto Tecnológico y GeoMinero de España (ITGE), 1991. Technical University of Catalonia, Barcelona, Spain, 177pp. Estudio Hidrogeológico del Campo de Cartagena (2ª Fase).

Geologica Acta, 10(1), 49-62 (2012) 60 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

Volume 1/2 Memory. Volume 2/2 Annex 1, 2, 3 and 4. Mora Cuenca, V., Rodríguez Estrella, T., Aragón Rueda, R., 1988. Technical report. Geological Survey of Spain, Madrid, Spain, Intrusión marina fósil en el Campo de Cartagena (Murcia). In: unpublished, 131pp. Fernández Rubio, R., López Geta, J.A., González Ramos, G. Jiménez-Martínez, J., Aravena, R., Candela, L., 2011. The role of (eds.) Proceedings of Coastal Aquifers Intrusion Technology: leaky boreholes on the contamination of a regional confined Mediterranean Countries (TIAC’88). IGME Book series, aquifer: A case study in the Campo de Cartagena region, Madrid, 221-236. Spain. Water, Air & Soil Pollution, 215, 311-327. Ovejero, G., Jacquin, J.P., Servajean, G., 1976. Les minéralisations Jiménez-Martínez, J., Himi, M., Robles-Arenas, V.M., Díaz, et leur contexte géologique dans la Sierra de Cartagena Y., Casas, A., Candela, L., 2008. Identificación mediante (Sud-Est de L’Espagne) (Mineralizations and their geologic tomografía eléctrica del límite geológico entre el Campo context in the Sierra de Cartagena (SE Spain)). Bulletin de Cartagena y la Sierra de Cartagena-La Unión. In: Pérez Société Géologique de France, 7, 613-633. Torrado, F., Cabrera Santana, M.C. (eds.). VII Congreso Ramos, G., Sánchez, J., 2003. Estructura geológica profunda Geológico de España, Las Palmas de Gran Canaria. “Murcia Sur-I”. Definición geológica, geométrica y Geotemas, 10, 295-298. confinamiento. In: López Geta, J.A., de la Orden, J.A., de Jiménez-Martínez, J., 2004. Personal communication. Hydraulic Dios Gómez, J., Ramos, G., Mejías, M., Rodríguez, L. (eds.) parameters for Campo de Cartagena aquifers (Murcia, Spain), Proceedings of Coastal Aquifers Intrusion Technology: unpublished. Mediterranean Countries (TIAC’03). IGME Book series, Loke, M.H., Barker R.D., 1996. Rapid least-squares inversion Madrid, 691-700. of apparent resistivity pseudosections by a quasi-Newton Robins, N.S., Rutter, H.K., Dumpleton, S., Peach, D.W., 2005. method. Geophysical Prospecting, 44(1), 131-152. The role of 3D visualisation as an analytical tool preparatory Loke, M.H., 2004. RES2DINV version 3.54-Rapid 2D resistivity to numerical modelling. Journal of Hydrology, 301, 287-295. and IP inversion using the least-squares method: Geoelectrical Robles-Arenas, V.M., Candela, L., 2010. Hydrogeological Imaging 2-D and 3-D. Geotomo Software, Malaysia, 130p. conceptual model characterisation of an abandoned mine site www.geoelectrical.com. Cited 1 February 2008. in semiarid climate. The Sierra de Cartagena-La Unión (SE López-Bermúdez, F., Conesa-García, C., 1990. Características Spain). Geologica Acta, 8(3), 235-248. granulométricas de los depósitos aluviales en el Campo de Robles-Arenas, V.M., Rodríguez, R., García, C., Manteca, J.I., Cartagena. Cuadernos de Investigación Geográfica, 16, 31-54. Candela, L., 2006. Sulphide-mining impacts in the physical López-Garrido, A.C., Pérez López, A., Sanz de Galdeano, C., 1997. environment: Sierra de Cartagena-La Unión (SE Spain) case Présence de Facies Muschelkalk dans des unités Alpujarrides study. Environmental Geology, 51, 47-64. de la région de Murcie (Cordillere Bétique, SE de I’Espagne) Rodríguez Estrella, T., 1983. Criterios hidrogeológicos aplicables et implications paléogéographiques. Comptes Rendus de al estudio de la neotectónica en el Sureste Español. l´Académie des Sciences. Paris. Série l1a., 324, 647-654. Mediterránea Servicios Geológicos, 2, 53-66. Manteca, J.I., García, C., 2001. La falla de Cartagena-La Unión. Rodríguez Estrella, T., 1986. La Neotectónica en la Región de Aportación visual de su existencia gracias a una obra pública. Murcia y su incidencia en la ordenación del territorio. In: In: Guillen, F., Del Ramo, A. (eds.). Patrimonio Geológico, Proceedings 1ª Jornadas de estudio del fenómeno sísmico y Cultura y Medio Ambiente. University of Murcia, Murcia, su incidencia en la ordenación del territorio. Madrid, Instituto Spain, 239-246. Geográfico Nacional, 281-303. Manteca, J.I., Ovejero, G., 1992. Los yacimientos Zn, Pb, Ag-Fe Rodríguez Estrella, T., 1995. Funcionamiento hidrogeológico del del distrito minero de La Unión-Cartagena, Bética Oriental Campo de Cartagena. Hidrogeología, 11, 21-38. (Zn, Pb, Ag-Fe ore deposits of La Unión-Cartagena mining Rodriguez Estrella, T., 2004. Decisive influence of neotectonics district, eastern Betic Cordillera). In: García, J., Martínez, J. on the water connection between the Mediterranean Sea, Mar (eds.). Recursos Minerales de España, Consejo Superior de Menor and the Campo de Cartagena aquifers. (South-East Investigaciones Científicas (CSIC), 1085-1101. of Spain): Consequences on extracting sea water by means Manteca Martínez, J.I., Rodríguez Martínez-Conde, J.A., Puga, of borings for desalination. In: Araguás, L., Custodio, E., E., Díaz de Federico, A., 2004. Deducción de la existencia Manzano, M. (eds.). Proceedings 18th SWIM Groundwater de un relieve Nevado-Filábride durante el Mioceno Medio- and Saline Intrusion. Madrid, Instituto Geológico y Minero Superior, actualmente bajo el mar, al sur de las sierras costeras de España (IGME) Book series, 745-758. alpujárrides de El Roldán y La Muela (oeste de Cartagena, Rodríguez Estrella, T., Jiménez-Martínez, J., López Chicano, Cordillera Bética Oriental). Revista de la Sociedad Geológica M., 2004. Ensayo de correlación entre transmisividades y de España, 17(1-2), 27-37. espesores de los acuíferos del Plioceno y Messiniense del Martelet, G., Calcagno, P., Gumiaux, C., Truffert, C., Bitri, A., Campo de Cartagena (Murcia y Alicante). In: Fernández Gapais, D., Brun, J.P., 2004. Integrated 3D geophysical and Uría, A. (eds.). Proceedings VIII Simposio de Hidrogeología. geological modelling of the Hercynian Suture Zone in the Zaragoza, Spain. XXVI, 239-249. Champtoceaux area (south Brittany, France). Tectonophysics, Rodríguez Estrella, T., Lillo, M., 1992. Geomorfología del Mar 382, 117-128. Menor y sectores litorales contiguos (Murcia-Alicante).

Geologica Acta, 10(1), 49-62 (2012) 61 DOI: 10.1344/105.000001703 J. JIMÉNEZ-MARTÍNEZ et al. Campo de Cartagena 3D hydro-geological model

Estudios de geomorfología en España. In: López Bermúdez, models for regional and land-use management: a case study F., Conesa García, C., Romero Díaz, M.A. (eds.). Proceedings from a Quaternary basin of south-western Québec, Canada. II Reunión Nacional de Geomorfología, Estudios de Hydrogeology Journal, 13, 690-707. Geomorfología de España, 787-807. Sanz de Galdeano, C., López-Garrido, A.C., García-Tortosa, F.J., Rolandi Sánchez-Solís, M., Yugin, V., Herrero Pacheco, J.L. Delgado, F., 1997. Nuevas observaciones en el Alpujárride del 2008. Aportación al conocimiento de la caracterización y sector centro-occidental de la Sierra de Carrascoy (Murcia). el funcionamiento hidrogeológico de la U.H. del Campo Consecuencias paleogeográficas. Estudios Geológicos, 53, de Cartagena (Cuenca del Segura), mediante utilización de 229-236. técnicas de Tomografía Remota Térmica. In: Fernández Uría, Sepesa, 1968. MM Seismic Survey. Fondo Documental del A. (eds.). Proceedings IX Simposio de Hidrogeología. Elche, Archivo de Hidrocarburos del Ministerio de Industria, Spain, XXVIII, 691-700. Turismo y Comercio. Spanish Government, Madrid, Spain, Ross, M., Parent, M., Lefebvre, R., 2005. 3D geologic framework unpublished. Manuscript received June 2009; revision accepted October 2010; published Online December 2011.

Geologica Acta, 10(1), 49-62 (2012) 62 DOI: 10.1344/105.000001703