Download Date 06/10/2021 05:40:25

Total Page:16

File Type:pdf, Size:1020Kb

Download Date 06/10/2021 05:40:25 Late Precambrian to Early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological geochemical and isotopic data. Item Type text; Dissertation-Reproduction (electronic) Authors Restrepo, Pedro Alonso. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 05:40:25 Link to Item http://hdl.handle.net/10150/187450 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely. event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back ofthe book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A BeD &. Howell Information Company 300 North Zeeb Road. Ann Arbor MI 48106-1346 USA 313n61-4700 800/521-0600 LATE PRECAMBRIAN TO EARLY MESOZOIC TECTONIC EVOLUTION OF THE COLOMBIAN ANDES, BASED ON NEW GEOCHRONOLOGICAL GEOCHEMICAL AND ISOTOPIC DATA by Pedro A. Restrepo Copyright © Pedro A. Restrepo 19~5 A Dissertation submitted to the faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNNERSITY OF ARIZONA 1995 UM! Number: 9624154 Copyright 1995 by Restrepo, Pedro Alonso All rights reserved. UMI Microform 9624154 Copyright 1996, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 2 THE UNIVERSITY OF ARIZONA ® GRADUATE COLLEGE As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Pedro Alonso Restrepo-Pace ----------------------~------------- entitled ------------------------------------------------------------LATE PRECAMBRIAN TO EARLY MESOZOIC TECTONIC EVOLUTION OF THE COLOMBIAN ANDES, BASED ON NEW GEOCHRONOLOGICAL GEOCHEMICAL AND ISOTOPIC DATA it be accepted as fulfilling the dissertation Doctor of Philosophy Date IS lAt;U 'is Date Suzanne Baldwin Date ~cJ (4 · tts AG~ Date (ri'Vb\f (f Jr- Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I her I have read this dissertation prepared under my direc that it be accepted as fulfilling the dissertation tor Date 3 STATEMENT BY THE AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: ~_~_ 4 ACKNOWLEDGMENTS During 1993's summer field session a farmer approached me one day and asked the obvious question: II what could possibly intrigue you so much that makes you come to such remote areas of Colombia to hammer rocks every single day???". After I informed this man that I was not searching for gold or emeralds and going out of my way to explain what I was attempting to elucidate, he simply giggled and replied : II I have no time for such nonsense, I have to feed my family ..... ". I could not be more grateful to life in general. Circumstances have permitted me to pursue and fulfill my intellectual curiosity in the most ideal of settings. I am greatly indebted to my parents who have provided me with the highest level of education and have raised me in a highly stimulating environment. I also have to be grateful to my brother who has and continues to be a motivating force and an example. Now, the single best thing that happened to me in the course of these six years was that, during the 1994 field session I met my wife Juliana. She should be granted at least a M. Sc. in Geology ( honoris CQusa- pazienza ). She became my right hand, rock crusher and mineral separator. Without her help, support and patience I would not been able to finish this dissertation. Moreover she constantly stimulated me with her endless happiness and positive attitude. Now, speaking of luxuries: Joaquin Ruiz as an advisor. Not only did he cover the fundamentals of an excellent academic advisor. He unconditionally supported me during my 5 studies in Arizona. Most important is that he became a friend, together with his family Bernadette and Peter. Special thanks go to the 'Bogota Cartel' : Diego, Emesto and Guillermo for their logistical support in Colombia. To Peter Coney I will always be grateful for personally 'opening the door' to me in Arizona ( and to graduate school in the States for that matter). To Mike Cosca for generously helping me gather the bulk of my data and for all the help in Lausanne. To Susanne Baldwin for permitting me to use the mineral separation lab and for having mercy on my Ar / Ar data. To George Gehrels for his field geology teachings and for his help in providing the U/Pb ages. To John Patchett for his harsh short-term yet positive long-term critique. To James Gleason for the Sm/Nd analyses. Helena and Bo for their academic logistical support. Finally I want to thank all of my friends of the 'Gran Combo' Lukas, Helge , Patricia, Marta, Andres, Elena, Joel, Diana and Sergio. We certainly had the best of times together. 6 A Juliana, mi Madre, mi Padre y mi Hermano 7 TABLE OF CONTENTS I. LIST FIGURES ................................................... 11 II. LIST OF TABLES ................................................14 III. ABSTRACT/RESUMEN ........................................15 IV. INTRODUCTION .............................................19 Results from this study...................................... 22 General background geology.. .. .. .. .. .... ............ ... 23 Previous work: Precambrian. .. ....................................25 Lower Paleozoic sediments. .. .. ......................26 Lower Paleozoic metamorphics. .. .. .................27 Lower Paleozoic intrusives. .. ........... ...........28 Middle Paleozoic sediments. ... ...... ...............29 Middle Paleozoic intrusives. .. .. .....................30 Upper Paleozoic sediments. .. ........ ..............30 Upper Paleozoic intrusives. .. ......................31 Figure captions................................................ 32 8 TABLE OF CONTENTS-continued V. DISTRIBUTION AND PETRO-TECTONIC CHARACTER OF THEGRENVILLE AGE BASEMENT IN THE COLOMBIAN ANDES. .. 45 Abstract. .. ............................................ ...45 Introduction..... , .............................. _... _. _....... 46 Analytical methods. .. .. _.................. _.............. 47 Garzon massif.... _. ............ _.... _. _....... _ .... " .......47 Santander massif.... _. ........................ _... _. _.. .. ..51 Santa Marta massif.... " ... _....................... _ .......... 53 Tectonic implications ........................... _.............. 54 Figure captions. .. ......................... _.. _............ 57 ~.GEOLOGYANDGEOCHRONOLOGYOFTHE SANTANDER MASSIF...................................... 83 Abstract. .. ........ _..................................... 83 Introduction.......................... _.......... _.... , .... 84 Stratigraphy..... , .. _...................... _................ 86 Structure. .. ............................................88 Petrologic character of basement. .. ....................... 91 9 TABLE OF CONTENTS-continued Geochronology..... , ....................................... 94 Discussion of geochronological data. .. 95 Regional time-space basement correlatives. .. ............. 100 Figure captions.... " ...................................... 102 VII. SUMMARY OF RESULTS FROM THIS STUDY.................. 143 VIII. TECTONIC EVOLUTION OF NW ANDES FROM LATE PRECAMBRIAN TO EARLY MESOZOIC TIME ................ 144 Time slices: 1.3 - 1.1 Ga ............................................ 145 1.1 - 0.9 Ga ...........................................
Recommended publications
  • The Oseberg Project: in This Issue !Vikings in Memphis the Oseberg Project P
    MEMPHIS ARCHAEOLOGICAL AND GEOLOGICAL SOCIETY MAGS Rockhound News ◊ A monthly newsletter for and by the members of MAGS Volume 63 ! Number 02 ! February 2017 ! A monthly newsletter for and by the members of MAGS The Oseberg Project: In this issue !Vikings in Memphis The Oseberg Project" P. 1 Rendy Hunt!!!!!February Program Countdown to Show" P. 1 MAGS And Federation Notes"" P. 2 President’s Message" P. 3 New Members"" P. 3 Membership Renewal Drawing Winner" P. 3 February Field Trip" P. 3 Can You Dig It?" P. 3 NASA Loves Lucy" P. 4 December Board Minutes"" P. 4 December Meeting Minutes"" P. 5 February Birthdays" P. 5 Fabulous Tennessee Fossils"" P. 6 A brief introduction and participates in the Society for Jewelry Bench Tips" P. 7 explanation of the Oseberg burial Creative Anachronism, (SCA) February 6 Deadline" P. 8 and the ongoing project to recre- which has led her on a journey Parsons Trip ate the burial grave goods using through History. Having Rescheduled" P. 8 materials sourced from Memphis researched the Vikings in depth, The Collision That and the surrounding areas. she is now embarking on a project Made the Moon" P. 8 to recreate the grave goods found Rendy Hunt is an Information Binomial Nomenclature P. 9 Systems Specialist from Memphis, in the Oseberg burial. Her research into this MAGS At A Glance" P. 10 Tennessee. In her spare time, she Continued, P.4 COUNTDOWN TO SHOW Memphis Mineral, Fossil, and Jewelry Show volunteer before, during, and at cleanup. The The Earth Wide Open only way we can put on such a large show is with your help.
    [Show full text]
  • Petrological and Geochemical Characteristics of Metamorphic and Igneous Units from the Allochthonous Madre De Dios Terrane, Southern Chile ⁎ F.A
    Petrological and geochemical characteristics of metamorphic and igneous units from the allochthonous Madre de Dios Terrane, Southern Chile ⁎ F.A. Sepúlveda a, , F. Hervé a, M. Calderón a, J.P. Lacassie b,c a Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 13518, Correo 21, Santiago, Chile b Paleoproterozoic Mineralization Research Group, Department of Geology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa c SERNAGEOMIN, Av. Santa María 0104, Providencia, Santiago, Chile Abstract The Denaro Complex, part of the Madre de Dios Terrane is composed of metamorphosed pillow basalts, metahyaloclastites, banded metalliferous and radiolarian metacherts, metapelites and redeposited calcareous metasandstones. The basaltic rocks show primary textures, minerals and structures. They are foliated especially in the vicinities of thrust faults, interpreted to have developed during the accretion of the terrane to the Gondwana margin. Composition of relic primary augite and chromite crystals plots into the MORB field of tectonic discriminant diagrams, as do the analyses of whole rock geochemistry, which indicates that these rocks are akin to volcanic rocks erupted along a constructive plate margin (N- and E-type MORBs), probably in a spreading axis-centered oceanic plateau or ridge. The metamorphic assemblages of pumpellyite–actinolite facies bear witness of metamorphism in a frontal accretionary wedge at elevated P and low T conditions, probably related to the Late Triassic–Early Jurassic Chonide event, which has been recognized elsewhere in the Patagonian Andes. Keywords: Metamorphism; Terrane accretion; Pumpellyite–actinolite facies; Seamount subduction; Frontal accretion 1. Introduction The rocks which crop out at the Madre de Dios archipelago (50°–50°50'S), referred to by Hervé and Mpodozis (2005) as 1.1.
    [Show full text]
  • Geologists of Russian Origin in Latin America
    REVISTA DEL MUSEO DE LA PLATA 2018, Volumen 3, Número 2: 223-295 Geologists of Russian origin in Latin America P. Tchoumatchenco1 , A.C. Riccardi 2 , †M. Durand Delga3 , R. Alonso 4 , 7 8 M. Wiasemsky5 , D. Boltovskoy 6 , R. Charrier , E. Minina 1Geological Institute, Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 24, 1113 Sofia, Bulgaria, [email protected] 2Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina, [email protected] 3Passed away August19, 2012 4Universidad Nacional de Salta, Argentina, [email protected] 581, Chemin du Plan de Charlet, F-74190 Passy, France, [email protected] 6Dep. Ecologia, Genetica y Evolucion, Fac. Ciencias Exactas y Naturales, Univ. de Buenos Aires, Argentina, [email protected] 7History of Geology Group, Sociedad Geológica de Chile, Santiago de Chile, [email protected] 8State Geological Museum “V.I.Vernadsky”, Mohovaya ul. 11/11, Moscow 125009, Russian Federation, [email protected] REVISTA DEL MUSEO DE LA PLATA / 2018, Volumen 3, Número 2: 223-295 / ISSN 2545-6377 ISSN 2545-6377 UNIVERSIDAD NACIONAL DE LA PLATA - FACULTAD DE CIENCIAS NATURALES Y MUSEO Revista del Museo de La Plata 2018 Volumen 3, Número 2 (Julio-Diciembre): 223-295 Geologists of Russian origin in Latin America P. Tchoumatchenco1, A.C. Riccardi2, †M. Durand Delga3, R. Alonso4, M. Wiasemsky5, D. Boltovskoy6, R. Charrier7, E. Minina8 1 Geological Institute, Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 24, 1113 Sofia, Bulgaria, [email protected] 2 Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina, [email protected] 3 Passed away August19, 2012 4 Universidad Nacional de Salta, Argentina, [email protected] 5 81, Chemin du Plan de Charlet, F-74190 Passy, France, [email protected] 6 Dep.
    [Show full text]
  • BRAGEN LIST Established by Rex Doescher JAN 19,1996 13:38 GENUS AUTHOR DATE RANGE
    BRAGEN LIST established by Rex Doescher JAN 19,1996 13:38 GENUS AUTHOR DATE RANGE SUPERFAMILY: ACROTRETACEA ACROTHELE LINNARSSON 1876 CAMBRIAN ACROTHYRA MATTHEW 1901 CAMBRIAN AKMOLINA POPOV & HOLMER 1994 CAMBRIAN AMICTOCRACENS HENDERSON & MACKINNON 1981 CAMBRIAN ANABOLOTRETA ROWELL & HENDERSON 1978 CAMBRIAN ANATRETA MEI 1993 CAMBRIAN ANELOTRETA PELMAN 1986 CAMBRIAN ANGULOTRETA PALMER 1954 CAMBRIAN APHELOTRETA ROWELL 1980 CAMBRIAN APSOTRETA PALMER 1954 CAMBRIAN BATENEVOTRETA USHATINSKAIA 1992 CAMBRIAN BOTSFORDIA MATTHEW 1891 CAMBRIAN BOZSHAKOLIA USHATINSKAIA 1986 CAMBRIAN CANTHYLOTRETA ROWELL 1966 CAMBRIAN CERATRETA BELL 1941 1 Range BRAGEN LIST - 1996 CAMBRIAN CURTICIA WALCOTT 1905 CAMBRIAN DACTYLOTRETA ROWELL & HENDERSON 1978 CAMBRIAN DEARBORNIA WALCOTT 1908 CAMBRIAN DIANDONGIA RONG 1974 CAMBRIAN DICONDYLOTRETA MEI 1993 CAMBRIAN DISCINOLEPIS WAAGEN 1885 CAMBRIAN DISCINOPSIS MATTHEW 1892 CAMBRIAN EDREJA KONEVA 1979 CAMBRIAN EOSCAPHELASMA KONEVA & AL 1990 CAMBRIAN EOTHELE ROWELL 1980 CAMBRIAN ERBOTRETA HOLMER & USHATINSKAIA 1994 CAMBRIAN GALINELLA POPOV & HOLMER 1994 CAMBRIAN GLYPTACROTHELE TERMIER & TERMIER 1974 CAMBRIAN GLYPTIAS WALCOTT 1901 CAMBRIAN HADROTRETA ROWELL 1966 CAMBRIAN HOMOTRETA BELL 1941 CAMBRIAN KARATHELE KONEVA 1986 CAMBRIAN KLEITHRIATRETA ROBERTS 1990 CAMBRIAN 2 Range BRAGEN LIST - 1996 KOTUJOTRETA USHATINSKAIA 1994 CAMBRIAN KOTYLOTRETA KONEVA 1990 CAMBRIAN LAKHMINA OEHLERT 1887 CAMBRIAN LINNARSSONELLA WALCOTT 1902 CAMBRIAN LINNARSSONIA WALCOTT 1885 CAMBRIAN LONGIPEGMA POPOV & HOLMER 1994 CAMBRIAN LUHOTRETA MERGL & SLEHOFEROVA
    [Show full text]
  • Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada
    :It k 'I! ' Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 Paleozoic Rocks of Antelope Valley Eureka and Nye Counties Nevada By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 P,rinciples of stratigraphy applied in descriptive study of the Central Great Basin Paleozoic column UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Silurian system ____________________________________ _ Abstract------------------------------------------- 1 36 Introduction. _____________________________________ _ 2 General features-------------------------------- 36 Geologic setting ______________ ------ ___ --------- 2 Roberts Mountains formation ___________________ _ 37 History of investigation ________________________ _ 5 Lone Mountain dolomite ______ ---_-------------- 39 Purpose and scope _____________ -- ______ ------ --- 6 Devonian system ______________ ---- __ - _- ___ - _------- 41 Acknowledgments ______________________________ _ 6 General features _____________ - ___________ -_----- 41 Geologic structure as related to stratigraphy __________ _ 6 Western Helderberg age limestones of the Monitor Paleontologic studies ______ ..:. _______ ~ ________________ _ 9 · Range ______ - _.- ___ --------------------------- 42 The Paleozoic column at Antelope Valley
    [Show full text]
  • Brachiopods from the Mobarak Formation, North Iran
    GeoArabia, 2011, v. 16, no. 3, p. 129-192 Gulf PetroLink, Bahrain Tournaisian (Mississippian) brachiopods from the Mobarak Formation, North Iran Maryamnaz Bahrammanesh, Lucia Angiolini, Anselmo Alessandro Antonelli, Babak Aghababalou and Maurizio Gaetani ABSTRACT Following detailed stratigraphic work on the Mississippian marlstone and bioclastic limestone of the Mobarak Formation of the Alborz Mountains in North Iran, forty-eight of the most important brachiopod taxa are here systematically described and illustrated. The ranges of the taxa are given along the Abrendan and Simeh Kuh stratigraphic sections, located north of Damgham. The examined brachiopod species date the base of the Mobarak Formation to the Tournaisian, in absence of age-diagnostic foraminifers. Change in brachiopod settling preferences indicates a shift from high energy, shallow-water settings with high nutrient supply in the lower part of the formation to quieter, soft, but not soppy substrates, with lower nutrient supply in the middle part of the Mobarak Formation. Brachiopod occurrence is instead scanty at its top. The palaeobiogeographic affinity of the Tournaisian brachiopods from North Iran indicates a closer relationship to North America, Western Europe and the Russian Platform than to cold-water Australian faunas, confirming the affinity of the other biota of the Alborz Mountains. This can be explained by the occurrence of warm surface-current gyres widely distributing brachiopod larvae across the Palaeotethys Ocean, where North Iran as other peri- Gondwanan blocks acted as staging-posts. INTRODUCTION The Mississippian Mobarak Formation of the Alborz Mountains (North Iran) has been recently revised by Brenckle et al. (2009) who focused mainly on its calcareous microfossil biota and refined its biostratigraphy, chronostratigraphy and paleogeography.
    [Show full text]
  • GONDWANA I11 Du Toit
    GONDWANA 503 i11 du Toit < Gondwana, Samfrau > ... the really important point is not so much to disprove Wegener’s particular views as to decide from the relevant evidence whether or not continental drift is a genuine variety of earth movement. —Holmes, 1944.1 A geologist who looked for geological evidence to test Wegener’s hypothesis of continental drift was Alexander Logie du Toit (1878-1948). As a field geologist for the Geological Survey of South Africa he became familiar with the regional geology of that country. Curious to see firsthand how well, if at all, the geology either side of the Atlantic matched, he applied for and upon receiving a generous grant from the Carnegie Institution of Washington in 1923 he spent five months in South America familiarizing himself with the geology of Argentina, Paraguay and Brazil. His seminal paper, A Geological Comparison of South America with South Africa, was published in 1927. He wrote, “The concordance between the opposed shores, incidentally pointed out and discussed by others long before Wegener, has consistently been extended by each fresh geological observation until at present the amount of agreement is 5 In his book, Our Wandering Continents nothing short of marvellous.” Persuasive of a former (1937)2 is the statement: “from the proximity of the two continents are the discoverable linkages mid-Palaeozoic onwards the lands must have that “cross from coast to coast, not only directly but crept northwards for thousands of kilometers diagonally as well, and are furthermore of widely different to account for their deduced climatic ages.” In the map to illustrate this tectonic and phasal (lateral vicissitudes.
    [Show full text]
  • Paleontological Resource Inventory at Chickasaw National Recreation Area, Oklahoma
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 5 PALEONTOLOGICAL RESOURCE INVENTORY AT CHICKASAW NATIONAL RECREATION AREA, OKLAHOMA MADISON L. ARMSTRONG1, ALYSIA S. KORN2, VINCENT L. SANTUCCI3 and JUSTIN TWEET4 1NPS Geoscientists-in-the-Parks, 413 Cottonwood St., Ardmore, OK 73401 -email: [email protected]; 2NPS Geoscientists-in-the-Parks, 411 Magee Ave., Philadelphia, PA 19111; -email: [email protected] 3National Park Service, 1201 Eye St., NW, Washington, D.C. 20005; -email: [email protected]; 4Tweet Paleo-Consulting, 9149 79th St. S., Cottage Grove, MN 55016; -email: [email protected] Abstract—Chickasaw National Recreation Area (CHIC), located in south-central Oklahoma east of the Arbuckle Mountains, is best known for its wildlife and water recreation. Few visitors are aware of the important paleontological resources that occur in the park. During the summer of 2016, a comprehensive field inventory of paleontological resources within CHIC was conducted. The inventory process involved primary literature research, an extensive field survey of fossiliferous units, and inventories of collections and repositories. The field survey yielded eight new fossiliferous localities, and eight previously undocumented taxa within CHIC. This is the first discovery of fossils in the Deese Group and Sycamore Limestone within the recreation area. During the 2016 inventory, fossils were documented at all previously known localities within CHIC, except for those localities now submerged under the Lake of the Arbuckles. Collections were made of the representative fauna found within CHIC, and 73 fossil specimens were accessioned into museum collections.
    [Show full text]
  • THE CORRELATION of ROCKS by MEANS of MICROSCOPIC FOSSILS Charles E
    VII. THE CORRELATION OF ROCKS BY MEANS OF MICROSCOPIC FOSSILS Charles E. Decker Department of Geology, University of Oklahoma To successfully carryon geological work in any area it is recognized that a knowledge of the succession of the rock formation is necessary. This process of matching up the rocks as to age in various parts of a region, or those of one region with those of another region, or those of one country with those of another country is called correlation of formations or of mem­ bers of formations. In such correlation the use of megascopic fossils long has been recognized, though different species vary greatly in their value as an aid to correlation. Thus one species, of the larger forms of Leptaena rhomboidalis, lived for many millions of years or through a good part of four great geologic periods, so if we were to depend on this fossil alone we could say that the strata containing it belong to the Ordovician, Sliurian, Devonian or Mississippian. Another form, Meristella arcuata, which also is common in the Haragan marl of the Arbuckle region, is limited to the very basal formation of the Devonian there and in New York and in New Brunswick, and thus it is recognized as a good horizon marker. Accordingly, the age of a formation sometimes may be told by the identification of a single species, but more commonly several fossils constituting a fauna are studied. In the study of faunas it is found that some are very definitely lirrited to a for­ nation, while others are transitional in character.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Acadian Orogeny 224 Ancyrodelloides delta biozone 15 Acanthopyge Limestone 126, 128 Ancyrodelloides transitans biozone 15, 17,19 Acastella 52, 68, 69, 70 Ancyrodelloides trigonicus biozone 15, 17,19 Acastoides 52, 54 Ancyrospora 31, 32,37 Acinosporites lindlarensis 27, 30, 32, 35, 147 Anetoceras 82 Acrimeroceras 302, 313 ?Aneurospora 33 acritarchs Aneurospora minuta 148 Appalachian Basin 143, 145, 146, 147, 148–149 Angochitina 32, 36, 141, 142, 146, 147 extinction 395 annulata Events 1, 2, 291–344 Falkand Islands 29, 30, 31, 32, 33, 34, 36, 37 comparison of conodonts 327–331 late Devonian–Mississippian 443 effects on fauna 292–293 Prague Basin 137 global recognition 294–299, 343 see also Umbellasphaeridium saharicum limestone beds 3, 246, 291–292, 301, 308, 309, Acrospirifer 46, 51, 52, 73, 82 311, 321 Acrospirifer eckfeldensis 58, 59, 81, 82 conodonts 329, 331 Acrospirifer primaevus 58, 63, 72, 74–77, 81, 82 Tafilalt fauna 59, 63, 72, 74, 76, 103 ammonoid succession 302–305, 310–311 Actinodesma 52 comparison of facies 319, 321, 323, 325, 327 Actinosporites 135 conodont zonation 299–302, 310–311, 320 Acuticryphops 253, 254, 255, 256, 257, 264 Anoplia theorassensis 86 Acutimitoceras 369, 392 anoxia 2, 3–4, 171, 191–192, 191 Acutimitoceras (Stockumites) 357, 359, 366, 367, 368, Hangenberg Crisis 391, 392, 394, 401–402, 369, 372, 413 414–417, 456 agnathans 65, 71, 72, 273–286 and carbon cycle 410–413 Ahbach Formation 172 Kellwasser Events 237–239, 243, 245, 252
    [Show full text]
  • Bibliography and Index
    Bulletin No. 203. Series G, Miscellaneous, 23 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES .1). YVALCOTT, DIRECTOR BIBLIOGRAPHY AND INDEX FOR T I-I E Y E A. R 1 9 O 1 BY FRED BOUGHTON "WEEKS WASHINGTON - GOVERNMENT PRINTING OFFICE 1902 CONTENTS, Page. Letter of transmittal....................................................... 5 Introduction ......... 4 ................................................... 7 List of publications examined ............................................. 9 Bibliography ............................................................ 13 Addenda to bibliographies for previous years............................... 95 Classified key to the index ...........'.......... ............................ 97 Index ..................................................................... 103 LETTER OF TRANSM1TTAL. DEPARTMENT OF THE INTERIOR, UNITED STATES GEOLOGICAL SURVEY, Washington, D. 0., July % SIR: I have the honor to transmit herewith the manuscript of a Bibliography and Index of North American Geology, Paleontology, Petrology, and Mineralogy for the Year 1901, and to request that it be published as a Bulletin of the Survey. Yours respectfully, F. B. WEEKS. Hon. CHARLES D. WALCOTT, director United State* Geological Survey. BIBLIOGRAPHY AND INDEX OF NORTH AMERICAN GEOLOGY, PALEONTOLOGY, PETROLOGY, AND MINERALOGY FOR THE YEAR 1901. By FRED BOUGHTON WEEKS. INTRODUCTION. The preparation and arrangement of the material of the Bibliog­ raphy and Index for 1901 is similar to that adopted for the previous publications.(Bulletins Nos. 130, 135, 146, 149, 156, 162, 172, 188, and 189). Several papers that should have been entered in the pre­ vious bulletins are here recorded, and the date of publication is given with each entry. Bibliography. The bibliography consists of full titles of separate papers, arranged alphabetically by authors' names, an abbreviated reference to the publication in which the paper is printed, and a brief description of the contents, each paper being numbered for index reference.
    [Show full text]
  • SILURIAN and UPPER ORDOVICIAN ATRYPIDS of the GENERA Plectatrrpa and SPIRIGERINA
    NORSK GEOLOGISK TIDSSKRIFT 47 SILURIAN AND UPPER ORDOVICIAN ATRYPIDS OF THE GENERA PLECTATRrPA AND SPIRIGERINA BY A. J. BoucoT & J. G. JoHNSON (Division of Geological Sciences, California Institute of Technology, Pasadena, California, U.S.A.) Abstract. The nomenclatural history of Plectatrypa and Spirigerina is traced and the basis for recognition of each taxon as a valid genus is developed. The earliest progenitors of Spirigerina marginalis, which range from the Upper Ordovician into the Lower Llandovery, are separated as a new subgenus Spirigerina (Eospirigerina), based on Atrypa praemarginalis Savage which is recognized in mid-North America and in Gaspe. The closely related S. (Eospi­ rigerina) gaspeensis is identified in Britain and Venezuela in the Lower Llan­ dovery. True Plectatrypa is unknown below the Lower Llandovery; previous citations from the Ordovician are of forms that the writers propose to include in Eospirigerina. A new species, Plectatrypa henningsmoeni, is proposed for a Lower Llandovery form from the Oslo region. Plectatrypa is regarded as an early offshoot of the Atrypinae, off the main line of evolution that resulted in Atrypa in a strict sense and then little differentiated from Eospirigerina, the earliest known member of the Carinatininae. The species and distribution of Plectatrypa and of Spirigerina are listed. Introduction In 1930, ScHUCHERT & CooPER proposed the genus Plectatrypa (1930 p. 278) for a group of sulcate Ordovician and Silurian atrypoids in­ cluding Atrypa imbricata Sowerby and Atrypa marginalis Dalman and their allies. Until about 1960, the name was commonly used for atrypoids related to imbricata and marginalis, with the exception of the work by PouLSEN (1943), who treated Plectatrypa as a synonym of Nalivkinia Bublitschenko.
    [Show full text]