Moduli of Surfaces and Applications to Curves

Total Page:16

File Type:pdf, Size:1020Kb

Moduli of Surfaces and Applications to Curves Moduli of Surfaces and Applications to Curves Monica Marinescu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Monica Marinescu All Rights Reserved Abstract Moduli of Surfaces and Applications to Curves Monica Marinescu This thesis has two parts. In the first part, we construct a moduli scheme F rns that parametrizes tuples pS1;S2;:::;Sn 1; p1; p2; : : : ; pnq where S1 is a fixed smooth surface over Spec R and Si 1 is the blowup of Si at a point pi, @1 ¤ i ¤ n. We show this moduli scheme is smooth and projective. We prove that F rns has smooth pnq @ ¤ ¤ ÞÑ divisors Di;j , 1 i j n, which correspond to tuples that map pj pi under the projection morphism Sj Ñ Si. When R k is an algebraically closed field, we ¦p r sq ¦p nq demonstrate that the Chow ring A F n is generated by these divisors over A S1 . ¦ We end by giving a precise description of A pF rnsq when S1 is a complex rational surface. In the second part of this thesis, we focus on finding a characterization of the smooth surfaces S on which a smooth very general curve of genus g embeds as an ample divisor. Our results can be summarized as follows: if the Kodaira dimension of S is κpSq ¡8 and S is not rational, then S is birational to C ¢ P1. If κpSq is 0 or 1, then such an embedding does not exist if the genus of C satisfies g ¥ 22. If κpSq 2 and the irregularity of S satisfies qpSq g, then S is birational to the symmetric square Sym2pCq. We analyze the conditions that need to be satisfied when S is a rational surface. The case in which S is of general type and qpSq 0 remains mainly open; however, we provide a partial answer to our question if S is a complete intersection. Contents Introduction 1 1 Definition of the moduli problem 12 2 Construction of the moduli scheme 16 3 Divisors of the moduli scheme 34 4 The Chow ring of the moduli scheme 41 5 The Chow ring of the moduli scheme for rational surfaces 47 6 A Question about Very General Curves 58 7 Curves and Surfaces 61 8 Preliminary results 66 9 Surfaces of Kodaira dimension ¡8 72 10 Surfaces of Kodaira dimension 0 86 10.1 Abelian Surfaces . 86 10.2 K3 Surfaces . 87 i 10.3 Enriques Surfaces . 89 10.4 Bielliptic Surfaces . 90 11 Surfaces of Kodaira dimension 1 91 12 Surfaces of Kodaira dimension 2 97 12.1 Surfaces of general type with qpSq g ................. 97 12.2 Surfaces of general type with qpSq 0 ................. 98 Bibliography 103 ii Acknowledgements I want to start by thanking my advisor Johan de Jong. I look up to Johan as a role model due to his incredible passion for mathematics, his vast knowledge, and his eagerness to share ideas with others. I learned a great amount from him through our many meetings, his research seminars, and the Stacks Project. I thank Johan for his incredible mentorship, through which I found confidence in my mathematical abilities. There were times when I struggled finding my way, and his guidance was key in helping me overcome the obstacles in my mathematical journey. I thank Robert Friedman, Henry Pinkham, Akash Sengupta and Daniel Litt for being part of my thesis committee, and for taking their time to carefully review this work and provide helpful feedback. I especially want to thank Daniel Litt for suggesting to me a project to think about back in 2018. His question and initial ideas were the starting point of this entire body of work. I am deeply grateful for everything I was offered in the Mathematics Department at Columbia, both academically and socially. These past five years have been a grand immersive experience into the world of mathematics research. Among the many avenues to learning, I am thankful for the multitude of seminars offered every semester, which helped me achieve a well-rounded perspective of mathematics. I thank the administrative staff, particularly Nathan Schweer, for all the hard work they put into making sure the graduate students are living their best life in the department. I am thankful for my academic brothers Raymond Cheng, Carl Lian, Dmitrii Pirozhkov, Noah Olander, Shizhang Li, Qixiao Ma, and Remy van Dobben de Bruyn. I learned a lot from our student seminars, our discussions, and from everyone's dif- ferent research topics. I particularly want to thank Raymond for reading some of my iii earlier work and giving me incredibly helpful comments. I want to thank many colleagues in the department who became lifelong friends, including: Clara Dolfen, Renata Picciotto, Raymond Cheng, Elena Giorgi, Laura Hayward, Stanislav Atanasov, Lea Kenigsberg, Sam Mundy, Noah Olander. You made these last five years some of the best of my life. You proved to me everyday that we can be happy in grad school. Lastly, I want to thank my family for being my support system: my parents, my sister, and my brother-in-law. I thank my partner, Owen, for making my life complete. iv Introduction Origin of the thesis The idea for this thesis started from Daniel Litt. He found Proposition 6.1 in Harris's and Mumford's paper \On the Kodaira Dimension of the Moduli Space of Curves" (see [20]), which states the following: if a surface S contains a very general curve of genus g ¥ 22 that moves in a non-trivial linear system, then S is birational to C ¢P1. Litt thought to analyze a similar question in a different setting: can we characterize the smooth surfaces on which a smooth very general curve C embeds as an ample divisor such that dim |C| 0? As a starting point, de Jong and Litt gave me the idea that Pic0pCq should be a simple abelian variety. To attack this question, we divided the problem into multiple cases, one for each minimal model of the surface S. This is the content of Chapters 6-12. Our result can be summarized as follows: if κpSq ¡8 and S is not rational, then S is birational to C ¢ P1. If the Kodaira dimension of S is 0 or 1, then such an embedding does not exists if the genus of C satisfies g ¥ 21. If κpSq 2 and qpSq g, then S is birational to the symmetric square Sym2pCq. There are a few cases left open. If S is a rational surface, we analyze the conditions that need to be satisfied in this situation (see Prop. 9.5 and 9.10). For the case in which S is of general type and qpSq 0, we prove the following partial result: if 1 S ãÑ Pr is a complete intersection and the composed morphism C ãÑ S ãÑ Pr satisfies the Maximal Rank Conjecture, then C is not ample on S if its genus is higher than 16. While working on the proofs above, we encountered the following scenario: say we have a series of morphisms Sn 1 Ñ ¤ ¤ ¤ Ñ S1, where S1 is a smooth minimal surface and each map Si 1 Ñ Si is the blowup of some point pi P Si. Say, for example, S1 is a K3 surface, so it has 19 moduli (see Thm. 10.2). Then Sn 1 has 19 2n moduli, since we add 2 moduli each time we blow up a new point. This line of thought made us consider the following scenario: say we fix a smooth surface S1 over Spec R. Consider all the ordered sequences of morphisms Sn 1 Ñ ¤ ¤ ¤ Ñ S1, where Si 1 Ñ Si is the blowup of Si at a point pi. Can we thoroughly construct a moduli space that parametrizes these objects? The answer is yes. In Chapters 1- 5, we construct a moduli scheme that parametrizes these sequences of blowups Sn 1 Ñ ¤ ¤ ¤ Ñ S1. We prove that the moduli functor is represented by a smooth projective scheme of dimension 2n over Spec R, as expected. We find smooth pnq p qn ÞÑ divisors Di;j that correspond to tuples Si; pi i1 where pj pi under the projection map Sj Ñ Si. When R k is an algebraically closed field, we prove that these ¦p r sq ¦p nq divisors generate the Chow ring A F n over A S1 . We end by giving a precise description of this Chow ring in the case where S1 is a complex rational surface. One of the resons why I found this problem interesting is that the moduli scheme has a very beautiful and natural construction, it behaves \as expected". All the intu- itive guesses we had about these moduli spaces and their properties while developing our theory turned out to be correct. Second of all, this construction is a new step forward in the study of moduli of surfaces. At the moment, one can find in the literature various constructions of moduli spaces parametrizing certain minimal surfaces. This moduli scheme stands 2 out because it parametrizes non-minimal surfaces. Lastly, looking at our results regarding the study of very general curves on smooth surfaces, here is what we can say based the open cases: if a curve C of high genus g is embedded on a smooth surface S as an ample divisor, then S is either a surface of general type of irregularity 0 (this is a vast class of surfaces), or it has a very specific blowup of P2.
Recommended publications
  • Curve Counting on Abelian Surfaces and Threefolds
    Algebraic Geometry 5 (4) (2018) 398{463 doi:10.14231/AG-2018-012 Curve counting on abelian surfaces and threefolds Jim Bryan, Georg Oberdieck, Rahul Pandharipande and Qizheng Yin Abstract We study the enumerative geometry of algebraic curves on abelian surfaces and three- folds. In the abelian surface case, the theory is parallel to the well-developed study of the reduced Gromov{Witten theory of K3 surfaces. We prove complete results in all genera for primitive classes. The generating series are quasi-modular forms of pure weight. Conjectures for imprimitive classes are presented. In genus 2, the counts in all classes are proven. Special counts match the Euler characteristic calculations of the moduli spaces of stable pairs on abelian surfaces by G¨ottsche{Shende. A formula for hyperelliptic curve counting in terms of Jacobi forms is proven (modulo a transversality statement). For abelian threefolds, complete conjectures in terms of Jacobi forms for the gen- erating series of curve counts in primitive classes are presented. The base cases make connections to classical lattice counts of Debarre, G¨ottsche, and Lange{Sernesi. Further evidence is provided by Donaldson{Thomas partition function computations for abelian threefolds. A multiple cover structure is presented. The abelian threefold conjectures open a new direction in the subject. 1. Introduction 1.1 Vanishings Let A be a complex abelian variety of dimension d. The Gromov{Witten invariants of A in genus g and class β 2 H2(A; Z) are defined by integration against the virtual class of the moduli space of stable maps M g;n(A; β), Z A ∗ a1 ∗ an τa1 (γ1) ··· τan (γn) = ev1(γ1) 1 ··· evn(γn) n ; g,β vir [M g;n(A,β)] see [PT14] for an introduction.
    [Show full text]
  • Threefolds of Kodaira Dimension One Such That a Small Pluricanonical System Do Not Define the Iitaka fibration
    THREEFOLDS OF KODAIRA DIMENSION ONE HSIN-KU CHEN Abstract. We prove that for any smooth complex projective threefold of Kodaira di- mension one, the m-th pluricanonical map is birational to the Iitaka fibration for every m ≥ 5868 and divisible by 12. 1. Introduction By the result of Hacon-McKernan [14], Takayama [25] and Tsuji [26], it is known that for any positive integer n there exists an integer rn such that if X is an n-dimensional smooth complex projective variety of general type, then |rKX| defines a birational morphism for all r ≥ rn. It is conjectured in [14] that a similar phenomenon occurs for any projective variety of non-negative Kodaira dimension. That is, for any positive integer n there exists a constant sn such that, if X is an n-dimensional smooth projective variety of non-negative Kodaira dimension and s ≥ sn is sufficiently divisible, then the s-th pluricanonical map of X is birational to the Iitaka fibration. We list some known results related to this problem. In 1986, Kawamata [17] proved that there is an integer m0 such that for any terminal threefold X with Kodaira dimension zero, the m0-th plurigenera of X is non-zero. Later on, Morrison proved that one can 5 3 2 take m0 =2 × 3 × 5 × 7 × 11 × 13 × 17 × 19. See [21] for details. In 2000, Fujino and Mori [12] proved that if X is a smooth projective variety with Kodaira dimension one and F is a general fiber of the Iitaka fibration of X, then there exists a integer M, which depends on the dimension of X, the middle Betti number of some finite covering of F and the smallest integer so that the pluricanonical system of F is non-empty, such that the M-th pluricanonical map of X is birational to the Iitaka fibration.
    [Show full text]
  • MINIMAL MODEL THEORY of NUMERICAL KODAIRA DIMENSION ZERO Contents 1. Introduction 1 2. Preliminaries 3 3. Log Minimal Model Prog
    MINIMAL MODEL THEORY OF NUMERICAL KODAIRA DIMENSION ZERO YOSHINORI GONGYO Abstract. We prove the existence of good minimal models of numerical Kodaira dimension 0. Contents 1. Introduction 1 2. Preliminaries 3 3. Log minimal model program with scaling 7 4. Zariski decomposition in the sense of Nakayama 9 5. Existence of minimal model in the case where º = 0 10 6. Abundance theorem in the case where º = 0 12 References 14 1. Introduction Throughout this paper, we work over C, the complex number ¯eld. We will make use of the standard notation and de¯nitions as in [KM] and [KMM]. The minimal model conjecture for smooth varieties is the following: Conjecture 1.1 (Minimal model conjecture). Let X be a smooth pro- jective variety. Then there exists a minimal model or a Mori ¯ber space of X. This conjecture is true in dimension 3 and 4 by Kawamata, Koll¶ar, Mori, Shokurov and Reid (cf. [KMM], [KM] and [Sho2]). In the case where KX is numerically equivalent to some e®ective divisor in dimen- sion 5, this conjecture is proved by Birkar (cf. [Bi1]). When X is of general type or KX is not pseudo-e®ective, Birkar, Cascini, Hacon Date: 2010/9/21, version 4.03. 2000 Mathematics Subject Classi¯cation. 14E30. Key words and phrases. minimal model, the abundance conjecture, numerical Kodaira dimension. 1 2 YOSHINORI GONGYO and McKernan prove Conjecture 1.1 for arbitrary dimension ([BCHM]). Moreover if X has maximal Albanese dimension, Conjecture 1.1 is true by [F2]. In this paper, among other things, we show Conjecture 1.1 in the case where º(KX ) = 0 (for the de¯nition of º, see De¯nition 2.6): Theorem 1.2.
    [Show full text]
  • Arxiv:2008.08852V2 [Math.AG] 15 Oct 2020 Assuming Theorem 2, We Conclude That M16 Cannot Be of General Type, Thus Es- Tablishing Theorem 1
    ON THE KODAIRA DIMENSION OF M16 GAVRIL FARKAS AND ALESSANDRO VERRA ABSTRACT. We prove that the moduli space of curves of genus 16 is not of general type. The problem of determining the nature of the moduli space Mg of stable curves of genus g has long been one of the key questions in the field, motivating important developments in moduli theory. Severi [Sev] observed that Mg is unirational for g ≤ 10, see [AC] for a modern presentation. Much later, in the celebrated series of papers [HM], [H], [EH], Harris, Mumford and Eisenbud showed that Mg is of general type for g ≥ 24. Very recently, it has been showed in [FJP] that both M22 and M23 are of general type. On the other hand, due to work of Sernesi [Ser], Chang-Ran [CR1], [CR2] and Verra [Ve] it is known that Mg is unirational also for 11 ≤ g ≤ 14. Finally, Bruno and Verra [BV] proved that M15 is rationally connected. Our result is the following: Theorem 1. The moduli space M16 of stable curves of genus 16 is not of general type. A few comments are in order. The main result of [CR3] claims that M16 is unir- uled. It has been however recently pointed out by Tseng [Ts] that the key calculation in [CR3] contains a fatal error, which genuinely reopens this problem (after 28 years)! Before explaining our strategy of proving Theorem 1, recall the standard notation ∆0;:::; ∆ g for the irreducible boundary divisors on Mg, see [HM]. Here ∆0 denotes b 2 c the closure in Mg of the locus of irreducible 1-nodal curves of arithmetic genus g.
    [Show full text]
  • Moduli of Curves 1
    THE MODULI SPACE OF CURVES In this section, we will give a sketch of the construction of the moduli space Mg of curves of genus g and the closely related moduli space Mg;n of n-pointed curves of genus g using two different approaches. Throughout this section we always assume that 2g − 2 + n > 0. In the first approach, we will embed curves in a projective space PN using a sufficiently high power n of their dualizing sheaf. Then a locus in the Hilbert scheme parameterizes n-canonically embedded curves of genus g. The automorphism group PGL(N + 1) acts on the Hilbert scheme. Using Mumford's Geometric Invariant Theory, one can take the quotient of the appropriate locus in the Hilbert scheme by the action of PGL(N + 1) to construct Mg. In the second approach, one first constructs the moduli space of curves as a Deligne-Mumford stack. One then exhibits an ample line bundle on the coarse moduli scheme of this stack. 1. Basics about curves We begin by collecting basic facts and definitions about stable curves. A curve singularity (C; p) is called a node if locally analytically the singularity is isomophic to the plane curve singularity xy = 0. A curve C is called at-worst-nodal or more simply nodal if the only singularities of C are nodes. The dualizing sheaf !C of an at-worst-nodal curve C is an invertible sheaf that has a simple description. Let ν : Cν ! C be the nor- malization of the curve C. Let p1; : : : ; pδ be the nodes of C and let −1 fri; sig = ν (pi).
    [Show full text]
  • The Kodaira Dimension of Siegel Modular Varieties of Genus 3 Or Higher
    The Kodaira dimension of Siegel modular varieties of genus 3 or higher Vom Fachbereich Mathematik der Universitat¨ Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von Dipl.-Math. Eric Schellhammer geboren am 18. November 1973 in Stuttgart 2004 [email protected] Universitat¨ Hannover – Fachbereich Mathematik February 25, 2004 Referent: Prof. Dr. Klaus Hulek, Universitat¨ Hannover Koreferent: Prof. Dr. Herbert Lange, Universitat¨ Erlangen Tag der Promotion: 6. Februar 2004 2 Abstract An Abelian variety is a g-dimensional complex torus which is a projective variety. In order to obtain an embedding into projective space one has to chose an ample line bundle. To each such line bundle one can associate a polarisation which only depends on the class of the line bundle in the Neron-Se´ veri group. The type of the polarisation is given by a g-tuple of integers e1;::: ;eg with the property that ei ei+1 for i = 1;:::;g 1. j ei+1 − If e1 = = eg = 1, the polarisation is said to be principal. If the values are ··· ei pairwise coprime, the polarisation is said to be coprime. Furthermore, we can give a symplectic basis for the group of n-torsion points, which is then called a level-n structure. Not only Abelian varieties but also their moduli spaces have been of interest for many years. The moduli space of Abelian varieties with a fixed polarisation (and op- tionally a level-n structure for a fixed n) can be constructed from the Siegel upper half space by dividing out the action of the appropriate arithmetic symplectic group.
    [Show full text]
  • Kodaira Dimension in Low Dimensional Topology 3
    KODAIRA DIMENSION IN LOW DIMENSIONAL TOPOLOGY TIAN-JUN LI Abstract. This is a survey on the various notions of Kodaira dimen- sion in low dimensional topology. The focus is on progress after the 2006 survey [78]. Contents 1. Introduction 1 2. κt and κs 2 2.1. The topological Kod dim κt for manifolds up to dimension 3 2 2.2. The symplectic Kod dim κs for 4−manifolds 4 2.3. Symplectic manifolds of dimension 6 and higher 6 3. Calculating κs 6 3.1. Additivity and subadditivity 6 3.2. Behavior under Surgeries 7 4. Main problems and progress in each class 8 4.1. Surfaces and symmetry of κ = −∞ manifolds 8 4.2. Towards the classification of κ = 0 manifolds 11 4.3. Euler number and decomposition of κs = 1 manifolds 15 4.4. Geography and exotic geography of κs = 2 manifolds 16 5. Extensions 17 5.1. Relative Kodaira dim for a symplectic pair 17 5.2. Symplectic manifolds with concave boundary 19 References 19 arXiv:1511.04831v1 [math.SG] 16 Nov 2015 1. Introduction Roughly speaking, a Kodaira dimension type invariant on a class of n−dimensional manifolds is a numerical invariant taking values in the fi- nite set n {−∞, 0, 1, · · · , ⌊ ⌋}, 2 where ⌊x⌋ is the largest integer bounded by x. Date: November 17, 2015. 1 2 TIAN-JUN LI The first invariant of this type is due to Kodaira ([64]) for smooth alge- braic varieties (naturally extended to complex manifolds): Suppose (M, J) is a complex manifold of real dimension 2m. The holomorphic Kodaira dimension κh(M, J) is defined as follows: −∞ if Pl(M, J) = 0 for all l ≥ 1, h κ (M, J)= 0 if Pl(M, J) ∈ {0, 1}, but 6≡ 0 for all l ≥ 1, k k if Pl(M, J) ∼ cl ; c> 0.
    [Show full text]
  • Algebraic Surfaces with Minimal Betti Numbers
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 2 (717–736) ALGEBRAIC SURFACES WITH MINIMAL BETTI NUMBERS JH K (금종해) Abstract These are algebraic surfaces with the Betti numbers of the complex projective plane, and are called Q-homology projective planes. Fake projective planes and the complex projective plane are smooth examples. We describe recent progress in the study of such surfaces, singular ones and fake projective planes. We also discuss open questions. 1 Q-homology Projective Planes and Montgomery-Yang problem A normal projective surface with the Betti numbers of the complex projective plane CP 2 is called a rational homology projective plane or a Q-homology CP 2. When a normal projective surface S has only rational singularities, S is a Q-homology CP 2 if its second Betti number b2(S) = 1. This can be seen easily by considering the Albanese fibration on a resolution of S. It is known that a Q-homology CP 2 with quotient singularities (and no worse singu- larities) has at most 5 singular points (cf. Hwang and Keum [2011b, Corollary 3.4]). The Q-homology projective planes with 5 quotient singularities were classified in Hwang and Keum [ibid.]. In this section we summarize progress on the Algebraic Montgomery-Yang problem, which was formulated by J. Kollár. Conjecture 1.1 (Algebraic Montgomery–Yang Problem Kollár [2008]). Let S be a Q- homology projective plane with quotient singularities. Assume that S 0 := S Sing(S) is n simply connected. Then S has at most 3 singular points. This is the algebraic version of Montgomery–Yang Problem Fintushel and Stern [1987], which was originated from pseudofree circle group actions on higher dimensional sphere.
    [Show full text]
  • The Moduli Stack Mg
    The moduli stack Mg Giulio Orecchia 24 September 2015 This document contains the notes for the first talk of the seminar on Moduli stacks of curves, held in Leiden in Autumn 2015. Thanks to Bas Edixhoven, David Holmes and Jinbi Jin for corrections/annotations. 1 Introduction Many interesting types of objects in algebraic geometry are parametrized in a natural way by geometric objects, called \moduli schemes" or \moduli spaces". Here we are interested in the case of smooth, proper curves of genus g. For these we have a notion of \coarse moduli scheme", usually denoted Mg, which does not have the good properties that a “fine moduli scheme" would have. For example, to a k-point of Mg one cannot always associate a curve defined over k, but rather sep a curve defined over k and isomorphic to its Galois conjugates. Hence, M0(R) consists of only one point although there exists more than one isomorphism class of curves of genus zero defined over . For instance, the conic V (x2 +y2 +z2) ⊂ 2 R PR is not isomorphic to 1 . PR On the other hand, by definition, the k-points of a fine moduli scheme corre- spond bijectively and functorially to (isomorphism classes of) objects defined over k. However, it turns out there cannot exist a fine moduli scheme for smooth curves. This happens more in general when the objects we consider have non-trivial auto- morphisms, as in the case of curves. Nonetheless, if we enlarge the category where we would like our moduli space to live (to the point where it is not a category any- more, but a 2-category), and introduce stacks, we can still find objects enjoying all the properties that we expect from a fine moduli space.
    [Show full text]
  • Report No. 26/2008
    Mathematisches Forschungsinstitut Oberwolfach Report No. 26/2008 Classical Algebraic Geometry Organised by David Eisenbud, Berkeley Joe Harris, Harvard Frank-Olaf Schreyer, Saarbr¨ucken Ravi Vakil, Stanford June 8th – June 14th, 2008 Abstract. Algebraic geometry studies properties of specific algebraic vari- eties, on the one hand, and moduli spaces of all varieties of fixed topological type on the other hand. Of special importance is the moduli space of curves, whose properties are subject of ongoing research. The rationality versus general type question of these spaces is of classical and also very modern interest with recent progress presented in the conference. Certain different birational models of the moduli space of curves have an interpretation as moduli spaces of singular curves. The moduli spaces in a more general set- ting are algebraic stacks. In the conference we learned about a surprisingly simple characterization under which circumstances a stack can be regarded as a scheme. For specific varieties a wide range of questions was addressed, such as normal generation and regularity of ideal sheaves, generalized inequalities of Castelnuovo-de Franchis type, tropical mirror symmetry constructions for Calabi-Yau manifolds, Riemann-Roch theorems for Gromov-Witten theory in the virtual setting, cone of effective cycles and the Hodge conjecture, Frobe- nius splitting, ampleness criteria on holomorphic symplectic manifolds, and more. Mathematics Subject Classification (2000): 14xx. Introduction by the Organisers The Workshop on Classical Algebraic Geometry, organized by David Eisenbud (Berkeley), Joe Harris (Harvard), Frank-Olaf Schreyer (Saarbr¨ucken) and Ravi Vakil (Stanford), was held June 8th to June 14th. It was attended by about 45 participants from USA, Canada, Japan, Norway, Sweden, UK, Italy, France and Germany, among of them a large number of strong young mathematicians.
    [Show full text]
  • Algebraic Geometry Codes Over Abelian Surfaces Containing No Absolutely Irreducible Curves of Low Genus Yves Aubry, Elena Berardini, Fabien Herbaut, Marc Perret
    Algebraic geometry codes over abelian surfaces containing no absolutely irreducible curves of low genus Yves Aubry, Elena Berardini, Fabien Herbaut, Marc Perret To cite this version: Yves Aubry, Elena Berardini, Fabien Herbaut, Marc Perret. Algebraic geometry codes over abelian surfaces containing no absolutely irreducible curves of low genus. Finite Fields and Their Applications, Elsevier, 2021. hal-02100210v2 HAL Id: hal-02100210 https://hal.archives-ouvertes.fr/hal-02100210v2 Submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ALGEBRAIC GEOMETRY CODES OVER ABELIAN SURFACES CONTAINING NO ABSOLUTELY IRREDUCIBLE CURVES OF LOW GENUS YVES AUBRY, ELENA BERARDINI, FABIEN HERBAUT AND MARC PERRET Abstract. We provide a theoretical study of Algebraic Geometry codes con- structed from abelian surfaces defined over finite fields. We give a general bound on their minimum distance and we investigate how this estimation can be sharpened under the assumption that the abelian surface does not contain low genus curves. This approach naturally leads us to consider Weil restric- tions of elliptic curves and abelian surfaces which do not admit a principal polarization. 1. Introduction The success of Goppa construction ([5]) of codes over algebraic curves in break- ing the Gilbert-Varshamov bound (see Tsfasman-Vl˘adu¸t-Zink bound in [18]) has been generating much interest over the last forty years.
    [Show full text]
  • Elliptic Curves on Abelian Surfaces
    Elliptic Curves on Abelian Surfaces Ernst Kani The purpose of this paper is to present two theorems which give an overview of the set of elliptic curves lying on an abelian surface and to discuss several applications. One of these applications is a classical theorem of Biermann (1883) and Humbert (1893) on the characterization of abelian surfaces containing elliptic curves in terms of the \singular relations" of Humbert. As a by{product one obtains a purely algebraic description of such relations and hence also of Humbert surfaces. 1. Introduction The principal aim of this note is to classify the set of elliptic curves lying on an abelian surface A defined over an algebraically closed field K. Since any elliptic curve on A may be translated to the origin, it is sufficient to classify the elliptic subgroups of A. The main result here is that these can be characterized numerically, that is, inside the N´eron{Severi group NS(A) = Div(A)= of numerical equivalence classes. ≡ Theorem 1.1 The map E cl(E) NS(A) induces a bijective correspon- dence between the set of elliptic7! subgroups2 E A of A and the primitive classes cl(D) NS(A) with (D:D) = 0 and (D:Θ)≤> 0 for some (hence any) ample divisor2Θ Div(A). 2 Here and below, we call an element x M of a finitely generated free Z-module M primitive if the quotient module2 M=Zx is torsion-free. KANI 2 As a first application of the above theorem, we note the following result which was first proved (for K = C) by Bolza [Bo] and by Poincar´e[Po] in 1886 (cf.
    [Show full text]