Biology of Bolas Spiders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Casting a Sticky Trap: SPIDERS and Their Predatory Ways
Casting a Sticky Trap: SPIDERS and Their Predatory Ways Bennett C. Moulder, ISM Research Associate and Professor Emeritus, Illinois College, Jacksonville, Illinois ating insects and other small sticky silk, capable of trapping and holding to the spot, and impales the insect with its arthropods is what spiders do for even relatively large an powerful insect prey. long chelicerae. First using her mouthparts a living. That spiders are an Damage to the orb caused by wind or strug- to cut a small slit in the tube, the spider enormously successful group of gling prey can be quickly repaired, or the then pulls the insect inside. After her meal, animals is testimony to how efficient they entire can be web taken down and replaced. the spider repairs the tear in the tube, re- Eare at catching their prey. Most insects move Many orb weavers replace their tattered web sumes her position below ground, and swiftly and, for their size, are quite powerful. with a new one every day. awaits the next victim. “For spiders to capture such prey, they have, Other spiders do not utilize webs for prey Mastophora, the bolas spider, is a mem- as a group, developed an impressive arsenal capture. Crab spiders, perfectly camouflaged ber of the family Araneidae, the typical orb of weapons and a variety of strategies. against their background, lie in wait on flow- weavers. This small spider has abandoned Except for one small family (Ul- ers or on the bark of trees to ambush unsus- the practice of orb web construction alto- oboridae), all spiders in Illinois have venom pecting insects. -
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm). -
Spider Biology Unit
Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme. -
CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties. -
Keystone Ancient Forest Preserve Resource Management Plan 2011
Keystone Ancient Forest Preserve Resource Management Plan 2011 Osage County & Tulsa County, Oklahoma Lowell Caneday, Ph.D. With Kaowen (Grace) Chang, Ph.D., Debra Jordan, Re.D., Michael J. Bradley, and Diane S. Hassell This page intentionally left blank. 2 Acknowledgements The authors acknowledge the assistance of numerous individuals in the preparation of this Resource Management Plan. On behalf of the Oklahoma Tourism and Recreation Department’s Division of State Parks, staff members were extremely helpful in providing access to information and in sharing of their time. In particular, this assistance was provided by Deby Snodgrass, Kris Marek, and Doug Hawthorne – all from the Oklahoma City office of the Oklahoma Tourism and Recreation Department. However, it was particularly the assistance provided by Grant Gerondale, Director of Parks and Recreation for the City of Sand Springs, Oklahoma, that initiated the work associated with this RMP. Grant provided a number of documents, hosted an on-site tour of the Ancient Forest, and shared his passion for this property. It is the purpose of the Resource Management Plan to be a living document to assist with decisions related to the resources within the park and the management of those resources. The authors’ desire is to assist decision-makers in providing high quality outdoor recreation experiences and resources for current visitors, while protecting the experiences and the resources for future generations. Lowell Caneday, Ph.D., Professor Leisure Studies Oklahoma State University Stillwater, -
First Evidence of Aggressive Chemical Mimicry in the Malagasy Orb
First evidence of aggressive chemical mimicry in the Malagasy orb weaving spider Exechocentrus lancearius Simon, 1889 (Arachnida: Araneae: Araneidae) and description of a second species in the genus Scharff, Nikolaj; Hormiga, Gustavo Published in: arthropod systematics & phylogeny Publication date: 2012 Document version Publisher's PDF, also known as Version of record Document license: Unspecified Citation for published version (APA): Scharff, N., & Hormiga, G. (2012). First evidence of aggressive chemical mimicry in the Malagasy orb weaving spider Exechocentrus lancearius Simon, 1889 (Arachnida: Araneae: Araneidae) and description of a second species in the genus. arthropod systematics & phylogeny, 70(2), 107-118. http://www.senckenberg.de/files/content/forschung/publikationen/arthropodsystematics/asp_70_2/04_asp_70_2 _scharff_hormiga_107-118.pdf Download date: 26. sep.. 2021 Arthropod Systematics & Phylogeny 107 70 (2) 107 – 118 © Senckenberg Gesellschaft für Naturforschung, eISSN 1864-8312, 28.09.2012 First evidence of aggressive chemical mimicry in the Malagasy orb weaving spider Exechocentrus lancearius Simon, 1889 (Arachnida: Araneae: Araneidae) and description of a second species in the genus NIKOLAJ SCHARFF 1 & GUSTAVO HORMIGA 2 1 Natural History Museum of Denmark, Zoological Museum and Center for Macroecology, Evolution and Climate, Universitetsparken 15, DK-2100 Copenhagen, Denmark [[email protected]] 2 Department of Biological Sciences, The George Washington University Washington, D.C. 20052, USA [[email protected]] Received 17.i.2012, accepted 13.vii.2012. Published online at www.arthropod-systematics.de on 28.ix.2012. > Abstract The araneid genus Exechocentrus Simon, 1889 and its type species Exechocentrus lancearius were originally described based on a single female specimen from Madagascar, which was missing the abdomen. -
A Redescription of Aculepeira Matsudae (Aranei: Araneidae), a Species Recently Found in Far East Russia
Arthropoda Selecta 29(1): 121–126 © ARTHROPODA SELECTA, 2020 A redescription of Aculepeira matsudae (Aranei: Araneidae), a species recently found in Far East Russia Ïåðåîïèñàíèå ïàóêà-êðóãîïðÿäà Aculepeira matsudae (Aranei: Araneidae), íåäàâíî íàéäåííîãî íà Äàëüíåì Âîñòîêå Ðîññèè Yuri M. Marusik1–3, Mikhail M. Omelko4–5, Pavel S. Simonov6 Þ.Ì. Ìàðóñèê1–3, Ì.Ì. Îìåëüêî4–5, Ï.Ñ. Ñèìîíîâ6 1 Institute for Biological Problems of the North, FEB RAS, Portovaya Str. 18, Magadan, Russia. E-mail: [email protected] 2 Department of Zoology & Entomology, University of the Free State, Bloemfontein 9300, South Africa 3 Zoological Museum, Biodiversity Unit, University of Turku, FI-20014, Finland. 4 Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia. E-mail: [email protected] 5 Far Eastern Federal University, Sukhanova 8, Vladivostok RF-690950, Russia. 6 Pacific Geographical Institute, Far Eastern Branch, Russian Academy of Sciences, Radio Str. 7, Vladivostok, 690041, Russia E-mail: [email protected] 1 Институт биологических проблем Севера ДВО РАН, Портовая 18, Магадан 685000 Россия. 4 Федеральный научный центр Биоразнообразия наземной биоты Восточной Азии ДВО РАН, Владивосток 690022, Россия. 5 Дальневосточный федеральный университет, улица Суханова 8, Владивосток 690950, Россия. 6 Федеральное государственное бюджетное учреждение науки, Тихоокеанский институт географии ДВО РАН, Владивосток 690041, ул. Радио 7, Россия. KEY WORDS: Araneae, Far East Asia, Primorskii Krai, Khabarovskii Krai. КЛЮЧЕВЫЕ СЛОВА: Araneae, Дальневосточная Азия, Приморский край, Хабаровский край. ABSTRACT. Aculepeira matsudae Tanikawa, Introduction 1994, a species previously known from Central Hok- kaido is reported from Far East Russia for the first Aculepeira Chamberlin et Ivie, 1942 is a medium- time. -
Newsletter 85
Australasian Arachnology 84 Page 1 THE AUSTRALASIAN ARACHNOLOGICAL Australasian Arachnology 84 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL SOCIETY The newsletter Australasian Arachnology depends on the contributions of members. www.australasian-arachnology.org Please send articles to the Editor: Acari – Araneae – Amblypygi – Opiliones – Palpigradi – Pseudoscorpiones – Pycnogonida – Michael G. Rix Schizomida – Scorpiones – Uropygi Department of Terrestrial Zoology Western Australian Museum The aim of the society is to promote interest in Locked Bag 49, Welshpool DC, W.A. 6986 the ecology, behaviour and taxonomy of Email: [email protected] arachnids of the Australasian region. Articles should be typed and saved as a MEMBERSHIP Microsoft Word document, with text in Times New Roman 12-point font. Only electronic Membership is open to all who have an interest email (preferred) or posted CD-ROM submiss- in arachnids – amateurs, students and ions will be accepted. professionals – and is managed by our Administrator (note new address): Previous issues of the newsletter are available at http://www.australasian- Volker W. Framenau arachnology.org/newsletter/issues. Phoenix Environmental Sciences P.O. Box 857 LIBRARY Balcatta, W.A. 6914 Email: [email protected] For those members who do not have access to a scientific library, the society has a large number Membership fees in Australian dollars (per 4 of reference books, scientific journals and paper issues): reprints available, either for loan or as photo- *discount personal institutional copies. For all enquiries concerning publica- Australia $8 $10 $12 tions please contact our Librarian: NZ/Asia $10 $12 $14 Elsewhere $12 $14 $16 Jean-Claude Herremans There is no agency discount. -
United States National Museum
ADYERTISEMEKT. This work (Bulletin No. 48) is one of a series of papers inteuded to illustrate the collections l)elongiug- to the United States, and constitut- iug- the National Museum, of which the Smithsonian Institution was placed in charge by the act of Congress of August 10, 1840. The publications of the National Museum consist of two series—the Bulletins, of which this is No. 48, in continuous series, and the Proceed- ings, of which the seventeenth volume is now in press. A small edition of each paper in the Proceedings is distributed in pamphlet form to specialists in advance of the publication of the bound volume. The Bulletins of the National Museum, the publication of which was commenced in 1875, consist of elaborate papers based upon the collec- tions of the Museum, reports of expeditions, etc., while the Proceed- ings facilitate the prompt publication of freshly-acquired facts relating to biologj^, anthropology, and geology, descriptions of restricted groups of animals and plants, the discussion of particular questions relative to the synonymy of species, and the diaries of minor expeditions. Other papers, of more general popular interest, are printed in the Ap])endix to the Annual Eeport. Full lists of the i^ublications of the Museum may be found in the cur- rent catalogues of the publications of the Smithsonian Institution. Papers intended for publication in the Proceedings and Bulletins of the National Museum are referred to the Committee on Publications, composed as follows: F. W, Time (chairman), R. Edward Earll (editor), T. H. Bean, Otis T. Mason, Leonhard Stejneger, and Lester F. -
Genetic Differences in Social Behavior and Spacing I N Populations of Metepeira Spinipes, a Communal-Territorial Orb Weaver (Araneae, Araneidae)
Uetz, G . W. and K . R . Cangialosi . 1986 . Genetic differences in social behavior and spacing i n populations of Metepeira spinipes, a communal-territorial orb weaver (Araneae, Araneidae) . J . Arachnol ., 14:159-173 . GENETIC DIFFERENCES IN SOCIAL BEHAVIOR AN D SPACING IN POPULATIONS OF METEPEIRA SPINIPES, A COMMUNAL-TERRITORIAL ORB WEAVER (ARANEAE, ARANEIDAE) I George W. Uetz and Karen R . Cangialosi Department of Biological Sciences University of Cincinnat i Cincinnati, Ohio 45221 U .S.A. ABSTRAC T Metepeira spinipes F. O. Pickard-Cambridge, a communal/territorial orb-weaver from Mexico , shows considerable geographic variation and temporal flexibility in spacing . A series of laboratory studies was conducted to test whether the variation in spacing observed in the field is solely the result of behavioral plasticity in response to environmental conditions, or the result of mechanisms inheren t in different populations (i .e ., genetic differences in behavior) . Spiders from source populations i n desert and moist tropical habitats were collected as eggs and raised in the laboratory under identica l controlled conditions . Measurements of three-dimensional spacing parameters in laboratory colonie s (nearest neighbor distance, within-colony density) have shown significant differences in spatia l organization between populations, suggesting a genetic basis to these differences . Behavioral observations confirm that there are behavioral ecotypes within this species, with levels of socialit y adapted to the regions in which they occur. INTRODUCTIO N There are constraints on the social behavior of orb weaving spiders (familie s Araneidae and Uloboridae) that make the evolution of sociality less likely in thi s group. Unlike the sheet or tangle webbing of spiders in other families whic h exhibit communal web building (Theridiidae, Agelenidae, Dictynidae, Eresidae , Amaurobiidae, Oecobiidae, Pholcidae), the orb web cannot be built by more tha n one spider.