APPENDIX F Exercises

Total Page:16

File Type:pdf, Size:1020Kb

APPENDIX F Exercises 540 APPENDIX F Exercises 1. Chapter 1: Objectives and Methods of Solid Mechanics 1.1. Defining a problem in solid mechanics 1.1.1. For each of the following applications, outline briefly: • What would you calculate if you were asked to model the component for a design application? • What level of detail is required in modeling the geometry of the solid? • How would you model loading applied to the solid? • Would you conduct a static or dynamic analysis? Is it necessary to account for thermal stresses? Is it necessary to account for temperature variation as a function of time? • What constitutive law would you use to model the material behavior? 1.1.1.1. A load cell intended to model forces applied to a specimen in a tensile testing machine 1.1.1.2. The seat-belt assembly in a vehicle 1.1.1.3. The solar panels on a communications satellite. 1.1.1.4. A compressor blade in a gas turbine engine 1.1.1.5. A MEMS optical switch 1.1.1.6. An artificial knee joint 1.1.1.7. A solder joint on a printed circuit board 1.1.1.8. An entire printed circuit board assembly 1.1.1.9. The metal interconnects inside a microelectronic circuit 1.2. What is the difference between a linear elastic stress-strain law and a hyperelastic stress-strain law? Give examples of representative applications for both material models. 1.3. What is the difference between a rate-dependent (viscoplastic) and rate independent plastic constitutive law? Give examples of representative applications for both material models. 1.4. Choose a recent publication describing an application of theoretical or computational solid mechanics from one of the following journals: Journal of the Mechanics and Physics of Solids; International Journal of Solids and Structures; Modeling and Simulation in Materials Science and Engineering; European Journal of Mechanics A; Computer methods in Applied Mechanics and Engineering. Write a short summary of the paper stating: (i) the goal of the paper; (ii) the problem that was solved, including idealizations and assumptions involved in the analysis; (iii) the method of analysis; and (iv) the main results; and (v) the conclusions of the study 541 2. Chapter 2: Governing Equations 2.1. Mathematical Description of Shape Changes in Solids e 2.1.1. A thin film of material is deformed in simple shear during a plate 2 impact experiment, as shown in the figure. Undeformed 2.1.1.1. Write down expressions for the displacement field in the h e film, in terms of xx12, d and h, expressing your answer as 1 components in the basis shown. e2 2.1.1.2. Calculate the Lagrange strain tensor associated with the d deformation, expressing your answer as components in the h Deformed basis shown. e1 2.1.1.3. Calculate the infinitesimal strain tensor for the deformation, expressing your answer as components in the basis shown. 2.1.1.4. Find the principal values of the infinitesimal strain tensor, in terms of d and h 2.1.2. Find a displacement field corresponding to a uniform infinitesimal strain field εij . (Don’t make this hard – in particular do not use the complicated approach described in Section 2.1.20. Instead, think about what kind of function, when differentiated, gives a constant). Is the displacement unique? 2.1.3. Find a formula for the displacement field that generates zero infinitesimal strain. 2.1.4. Find a displacement field that corresponds to a uniform Lagrange strain tensor Eij . Is the displacement unique? Find a formula for the most general displacement field that generates a uniform Lagrange strain. 2.1.5. The displacement field in a homogeneous, isotropic circular shaft twisted through angle α at one end is e2 given by ⎛⎞ααx33 ⎛⎞x e1 ux11=−−[cos⎜⎟ 1] x 2 sin ⎜⎟ ⎝⎠LL ⎝⎠ e3 α ⎛⎞ααxx33 ⎛⎞ ux21=+sin⎜⎟ x 2 [cos ⎜⎟ − 1] ⎝⎠LL ⎝⎠ L u3 = 0 2.1.5.1. Calculate the matrix of components of the deformation gradient tensor 2.1.5.2. Calculate the matrix of components of the Lagrange strain tensor. Is the strain tensor a function of x3 ? Why? 2.1.5.3. Find an expression for the increase in length of a material fiber of initial length dl, which is on the outer surface of the cylinder and initially oriented in the e3 direction. 2.1.5.4. Show that material fibers initially oriented in the e2 and e2 directions do not change their length. 2.1.5.5. Calculate the principal values and directions of the Lagrange strain tensor at the point xax12===,,00 x 3. Hence, deduce the orientations of the material fibers that have the greatest and smallest increase in length. 542 2.1.5.6. Calculate the components of the infinitesimal strain tensor. Show that, for small values of α , the infinitesimal strain tensor is identical to the Lagrange strain tensor, but for finite rotations the two measures of deformation differ. 2.1.5.7. Use the infinitesimal strain tensor to obtain estimates for the lengths of material fibers initially oriented with the three basis vectors. Where is the error in this estimate greatest? How large can α be before the error in this estimate reaches 10%? 2.1.6. To measure the in-plane deformation of a e2 sheet of metal during a forming process, your e2 (c) managers place three small hardness indentations on the sheet. Using a travelling microscope, they (c) 2cm 2.8cm determine that the initial lengths of the sides of 1cm 1.414cm the triangle formed by the three indents are 1cm, (a) (a) (b) e1 1cm, 1.414cm, as shown in the picture below. e1 After deformation, the sides have lengths 1.5cm, 1cm 1.5cm (b) 2.0cm and 2.8cm. Your managers would like to use this information to determine the in—plane components of the Lagrange strain tensor. Unfortunately, being business economics graduates, they are unable to do this. 2.1.6.1. Explain how the measurements can be used to determine EE11,, 22 E 12 and do the calculation. 2.1.6.2. Is it possible to determine the deformation gradient from the measurements provided? Why? If not, what additional measurements would be required to determine the deformation gradient? 2.1.7. To track the deformation in a slowly moving glacier, e2 e three survey stations are installed in the shape of an 2 equilateral triangle, spaced 100m apart, as shown in the 120m picture. After a suitable period of time, the spacing 100m 100m between the three stations is measured again, and found 110m e e to be 90m, 110m and 120m, as shown in the figure. 1 1 Assuming that the deformation of the glacier is 100m 90m homogeneous over the region spanned by the survey Before deformation stations, please compute the components of the Lagrange After deformation strain tensor associated with this deformation, expressing your answer as components in the basis shown. 2.1.8. Compose a limerick that will help you to remember the distinction between engineering shear strains and the formal (mathematical) definition of shear strain 2.1.9. A rigid body motion is a nonzero displacement field that does not distort any infinitesimal volume element within a solid. Thus, a rigid body displacement induces no strain, and hence no stress, in the solid. The deformation corresponding to a 3D rigid rotation about an axis through the origin is yRx= ⋅=or yRxiijj where R must satisfy RR⋅ TT=⋅= R R I, det(R)>0. 2.1.9.1. Show that the Lagrange strain associated with this deformation is zero. 2.1.9.2. As a specific example, consider the deformation 543 ⎡⎤yx11⎡⎤cosθθ− sin 0 ⎡⎤ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥yx22= ⎢⎥sinθθ cos 0 ⎢⎥ ⎣⎦⎢⎥yx33⎣⎦⎢⎥001 ⎣⎦⎢⎥ This is the displacement field caused by rotating a solid through an angle θ about the e3 axis. Find the deformation gradient for this displacement field, and show that the deformation gradient tensor is orthogonal, as predicted above. Show also that the infinitesimal strain tensor for this displacement field is not generally zero, but is of order θ 2 if θ is small. 2.1.9.3. If the displacements are small, we can find a simpler representation for a rigid body displacement. Consider a deformation of the form yxi=∈ ijkω j k Here ω is a vector with magnitude <<1, which represents an infinitesimal rotation about an axis parallel to ω . Show that the infinitesimal strain tensor associated with this displacement is always zero. Show further that the Lagrange strain associated with this displacement field is 1 E =−δ ωω ωω ij2 () ij k k i j This is not, in general, zero. It is small if all ωk <<1 . 2.1.10. The formula for the deformation due to a rotation through an angle θ about an axis parallel to a unit vector n that passes through the origin is ⎡⎤ ynnnxiijijikjkj=+−+∈⎣⎦cosθδ (1 cos θ ) sin θ 2.1.10.1. Calculate the components of corresponding deformation gradient 2.1.10.2. Verify that the deformation gradient satisfies FFik jk= FF ki kj= δ ij 2.1.10.3. Find the components of the inverse of the deformation gradient 2.1.10.4. Verify that both the Lagrange strain tensor and the Eulerian strain tensor are zero for this deformation. What does this tell you about the distorsion of the material? 2.1.10.5. Calculate the Jacobian of the deformation gradient. What does this tell you about volume changes associated with the deformation? 2.1.11. In Section 2.1.6 it was stated that the Eulerian * strain tensor Eij can be used to relate the length n of a material fiber in a deformable solid before and after deformation, using the formula l0 l 22 ll− 0 * e = Eijnn i j 2 2l2 where ni are the components of a unit vector Deformed Original Configuration parallel to the material fiber after deformation.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Mechanics of Materials Plasticity
    Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Reference Module in Materials Science and Materials Engineering, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Lubarda V.A., Mechanics of Materials: Plasticity. In: Saleem Hashmi (editor-in-chief), Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier; 2016. pp. 1-24. ISBN: 978-0-12-803581-8 Copyright © 2016 Elsevier Inc. unless otherwise stated. All rights reserved. Author's personal copy Mechanics of Materials: Plasticity$ VA Lubarda, University of California, San Diego, CA, USA r 2016 Elsevier Inc. All rights reserved. 1 Yield Surface 1 1.1 Yield Surface in Strain Space 2 1.2 Yield Surface in Stress Space 2 2 Plasticity Postulates, Normality and Convexity
    [Show full text]
  • Arxiv:1910.01953V1 [Cond-Mat.Soft] 4 Oct 2019 Tion of the Load
    Geometric charges and nonlinear elasticity of soft metamaterials Yohai Bar-Sinai,1 Gabriele Librandi,1 Katia Bertoldi,1 and Michael Moshe2, ∗ 1School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138 2Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel 91904 Problems of flexible mechanical metamaterials, and highly deformable porous solids in general, are rich and complex due to nonlinear mechanics and nontrivial geometrical effects. While numeric approaches are successful, analytic tools and conceptual frameworks are largely lacking. Using an analogy with electrostatics, and building on recent developments in a nonlinear geometric formu- lation of elasticity, we develop a formalism that maps the elastic problem into that of nonlinear interaction of elastic charges. This approach offers an intuitive conceptual framework, qualitatively explaining the linear response, the onset of mechanical instability and aspects of the post-instability state. Apart from intuition, the formalism also quantitatively reproduces full numeric simulations of several prototypical structures. Possible applications of the tools developed in this work for the study of ordered and disordered porous mechanical metamaterials are discussed. I. INTRODUCTION tic metamaterials out of an underlying nonlinear theory of elasticity. The hallmark of condensed matter physics, as de- A theoretical analysis of the elastic problem requires scribed by P.W. Anderson in his paper \More is Dif- solving the nonlinear equations of elasticity while satis- ferent" [1], is the emergence of collective phenomena out fying the multiple free boundary conditions on the holes of well understood simple interactions between material edges - a seemingly hopeless task from an analytic per- elements. Within the ever increasing list of such systems, spective.
    [Show full text]
  • An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-04-28 An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime Khosravani, Sarah Khosravani, S. (2014). An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/24849 http://hdl.handle.net/11023/1443 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY An Effective Stress Equation for Unsaturated Granular Media in Pendular Regime by Sarah Khosravani A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF CIVIL ENGINEERING CALGARY, ALBERTA April, 2014 c Sarah Khosravani 2014 Abstract The mechanical behaviour of a wet granular material is investigated through a microme- chanical analysis of force transport between interacting particles with a given packing and distribution of capillary liquid bridges. A single effective stress tensor, characterizing the ten- sorial contribution of the matric suction and encapsulating evolving liquid bridges, packing, interfaces, and water saturation, is derived micromechanically. The physical significance of the effective stress parameter (χ) as originally introduced in Bishop’s equation is examined and it turns out that Bishop’s equation is incomplete.
    [Show full text]
  • Equation of State for the Lennard-Jones Fluid
    Equation of State for the Lennard-Jones Fluid Monika Thol1*, Gabor Rutkai2, Andreas Köster2, Rolf Lustig3, Roland Span1, Jadran Vrabec2 1Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany 2Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 3Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, USA Abstract An empirical equation of state correlation is proposed for the Lennard-Jones model fluid. The equation in terms of the Helmholtz energy is based on a large molecular simulation data set and thermal virial coefficients. The underlying data set consists of directly simulated residual Helmholtz energy derivatives with respect to temperature and density in the canonical ensemble. Using these data introduces a new methodology for developing equations of state from molecular simulation data. The correlation is valid for temperatures 0.5 < T/Tc < 7 and pressures up to p/pc = 500. Extensive comparisons to simulation data from the literature are made. The accuracy and extrapolation behavior is better than for existing equations of state. Key words: equation of state, Helmholtz energy, Lennard-Jones model fluid, molecular simulation, thermodynamic properties _____________ *E-mail: [email protected] Content Content ....................................................................................................................................... 2 List of Tables .............................................................................................................................
    [Show full text]
  • Viscosity of Gases References
    VISCOSITY OF GASES Marcia L. Huber and Allan H. Harvey The following table gives the viscosity of some common gases generally less than 2% . Uncertainties for the viscosities of gases in as a function of temperature . Unless otherwise noted, the viscosity this table are generally less than 3%; uncertainty information on values refer to a pressure of 100 kPa (1 bar) . The notation P = 0 specific fluids can be found in the references . Viscosity is given in indicates that the low-pressure limiting value is given . The dif- units of μPa s; note that 1 μPa s = 10–5 poise . Substances are listed ference between the viscosity at 100 kPa and the limiting value is in the modified Hill order (see Introduction) . Viscosity in μPa s 100 K 200 K 300 K 400 K 500 K 600 K Ref. Air 7 .1 13 .3 18 .5 23 .1 27 .1 30 .8 1 Ar Argon (P = 0) 8 .1 15 .9 22 .7 28 .6 33 .9 38 .8 2, 3*, 4* BF3 Boron trifluoride 12 .3 17 .1 21 .7 26 .1 30 .2 5 ClH Hydrogen chloride 14 .6 19 .7 24 .3 5 F6S Sulfur hexafluoride (P = 0) 15 .3 19 .7 23 .8 27 .6 6 H2 Normal hydrogen (P = 0) 4 .1 6 .8 8 .9 10 .9 12 .8 14 .5 3*, 7 D2 Deuterium (P = 0) 5 .9 9 .6 12 .6 15 .4 17 .9 20 .3 8 H2O Water (P = 0) 9 .8 13 .4 17 .3 21 .4 9 D2O Deuterium oxide (P = 0) 10 .2 13 .7 17 .8 22 .0 10 H2S Hydrogen sulfide 12 .5 16 .9 21 .2 25 .4 11 H3N Ammonia 10 .2 14 .0 17 .9 21 .7 12 He Helium (P = 0) 9 .6 15 .1 19 .9 24 .3 28 .3 32 .2 13 Kr Krypton (P = 0) 17 .4 25 .5 32 .9 39 .6 45 .8 14 NO Nitric oxide 13 .8 19 .2 23 .8 28 .0 31 .9 5 N2 Nitrogen 7 .0 12 .9 17 .9 22 .2 26 .1 29 .6 1, 15* N2O Nitrous
    [Show full text]
  • Analysis of Deformation
    Chapter 7: Constitutive Equations Definition: In the previous chapters we’ve learned about the definition and meaning of the concepts of stress and strain. One is an objective measure of load and the other is an objective measure of deformation. In fluids, one talks about the rate-of-deformation as opposed to simply strain (i.e. deformation alone or by itself). We all know though that deformation is caused by loads (i.e. there must be a relationship between stress and strain). A relationship between stress and strain (or rate-of-deformation tensor) is simply called a “constitutive equation”. Below we will describe how such equations are formulated. Constitutive equations between stress and strain are normally written based on phenomenological (i.e. experimental) observations and some assumption(s) on the physical behavior or response of a material to loading. Such equations can and should always be tested against experimental observations. Although there is almost an infinite amount of different materials, leading one to conclude that there is an equivalently infinite amount of constitutive equations or relations that describe such materials behavior, it turns out that there are really three major equations that cover the behavior of a wide range of materials of applied interest. One equation describes stress and small strain in solids and called “Hooke’s law”. The other two equations describe the behavior of fluidic materials. Hookean Elastic Solid: We will start explaining these equations by considering Hooke’s law first. Hooke’s law simply states that the stress tensor is assumed to be linearly related to the strain tensor.
    [Show full text]
  • 1 Fluid Flow Outline Fundamentals of Rheology
    Fluid Flow Outline • Fundamentals and applications of rheology • Shear stress and shear rate • Viscosity and types of viscometers • Rheological classification of fluids • Apparent viscosity • Effect of temperature on viscosity • Reynolds number and types of flow • Flow in a pipe • Volumetric and mass flow rate • Friction factor (in straight pipe), friction coefficient (for fittings, expansion, contraction), pressure drop, energy loss • Pumping requirements (overcoming friction, potential energy, kinetic energy, pressure energy differences) 2 Fundamentals of Rheology • Rheology is the science of deformation and flow – The forces involved could be tensile, compressive, shear or bulk (uniform external pressure) • Food rheology is the material science of food – This can involve fluid or semi-solid foods • A rheometer is used to determine rheological properties (how a material flows under different conditions) – Viscometers are a sub-set of rheometers 3 1 Applications of Rheology • Process engineering calculations – Pumping requirements, extrusion, mixing, heat transfer, homogenization, spray coating • Determination of ingredient functionality – Consistency, stickiness etc. • Quality control of ingredients or final product – By measurement of viscosity, compressive strength etc. • Determination of shelf life – By determining changes in texture • Correlations to sensory tests – Mouthfeel 4 Stress and Strain • Stress: Force per unit area (Units: N/m2 or Pa) • Strain: (Change in dimension)/(Original dimension) (Units: None) • Strain rate: Rate
    [Show full text]
  • Chapter 3 Equations of State
    Chapter 3 Equations of State The simplest way to derive the Helmholtz function of a fluid is to directly integrate the equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be applied to either vapour-liquid or supercritical phenomena without any conceptual difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is also possible to determine transitions between these phenomena from the same inputs. All of the physical properties of the fluid except ideal gas are also simultaneously calculated. Many equations of state have been proposed in the literature with either an empirical, semi- empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin (1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996), Wei and Sadus (2000) and Sengers et al. (2000). The van der Waals equation of state (1873) was the first equation to predict vapour-liquid coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) improved the accuracy of the van der Waals equation by proposing a temperature dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed additional modifications of the Redlich-Kwong equation to more accurately predict the vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and Starling (1969) modified the repulsive term of van der Waals equation of state and obtained more accurate expressions for hard sphere systems. Christoforakos and Franck (1986) modified both the attractive and repulsive terms of van der Waals equation of state. Boublik (1981) extended the Carnahan-Starling hard sphere term to obtain an accurate equation for hard convex geometries.
    [Show full text]
  • Crack Tip Elements and the J Integral
    EN234: Computational methods in Structural and Solid Mechanics Homework 3: Crack tip elements and the J-integral Due Wed Oct 7, 2015 School of Engineering Brown University The purpose of this homework is to help understand how to handle element interpolation functions and integration schemes in more detail, as well as to explore some applications of FEA to fracture mechanics. In this homework you will solve a simple linear elastic fracture mechanics problem. You might find it helpful to review some of the basic ideas and terminology associated with linear elastic fracture mechanics here (in particular, recall the definitions of stress intensity factor and the nature of crack-tip fields in elastic solids). Also check the relations between energy release rate and stress intensities, and the background on the J integral here. 1. One of the challenges in using finite elements to solve a problem with cracks is that the stress field at a crack tip is singular. Standard finite element interpolation functions are designed so that stresses remain finite a everywhere in the element. Various types of special b c ‘crack tip’ elements have been designed that 3L/4 incorporate the singularity. One way to produce a L/4 singularity (the method used in ABAQUS) is to mesh L the region just near the crack tip with 8 noded elements, with a special arrangement of nodal points: (i) Three of the nodes (nodes 1,4 and 8 in the figure) are connected together, and (ii) the mid-side nodes 2 and 7 are moved to the quarter-point location on the element side.
    [Show full text]
  • Linear Elasticity
    10 Linear elasticity When you bend a stick the reaction grows noticeably stronger the further you go — until it perhaps breaks with a snap. If you release the bending force before it breaks, the stick straightens out again and you can bend it again and again without it changing its reaction or its shape. That is elasticity. Robert Hooke (1635–1703). In elementary mechanics the elasticity of a spring is expressed by Hooke’s law English physicist. Worked on elasticity, built tele- which says that the force necessary to stretch or compress a spring is propor- scopes, and the discovered tional to how much it is stretched or compressed. In continuous elastic materials diffraction of light. The Hooke’s law implies that stress is proportional to strain. Some materials that we famous law which bears his name is from 1660. usually think of as highly elastic, for example rubber, do not obey Hooke’s law He stated already in 1678 except under very small deformation. When stresses grow large, most materials the inverse square law for gravity, over which he deform more than predicted by Hooke’s law. The proper treatment of non-linear got involved in a bitter elasticity goes far beyond the simple linear elasticity which we shall discuss in controversy with Newton. this book. The elastic properties of continuous materials are determined by the under- lying molecular structure, but the relation between material properties and the molecular structure and arrangement in solids is complicated, to say the least. Luckily, there are broad classes of materials that may be described by a few Thomas Young (1773–1829).
    [Show full text]
  • Foundations of Continuum Mechanics
    Foundations of Continuum Mechanics • Concerned with material bodies (solids and fluids) which can change shape when loaded, and view is taken that bodies are continuous bodies. • Commonly known that matter is made up of discrete particles, and only known continuum is empty space. • Experience has shown that descriptions based on continuum modeling is useful, provided only that variation of field quantities on the scale of deformation mechanism is small in some sense. Goal of continuum mechanics is to solve BVP. The main steps are 1. Mathematical preliminaries (Tensor theory) 2. Kinematics 3. Balance laws and field equations 4. Constitutive laws (models) Mathematical structure adopted to ensure that results are coordinate invariant and observer invariant and are consistent with material symmetries. Vector and Tensor Theory Most tensors of interest in continuum mechanics are one of the following type: 1. Symmetric – have 3 real eigenvalues and orthogonal eigenvectors (eg. Stress) 2. Skew-Symmetric – is like a vector, has an associated axial vector (eg. Spin) 3. Orthogonal – describes a transformation of basis (eg. Rotation matrix) → 3 3 3 u = ∑uiei = uiei T = ∑∑Tijei ⊗ e j = Tijei ⊗ e j i=1 ~ ij==1 1 When the basis ei is changed, the components of tensors and vectors transform in a specific way. Certain quantities remain invariant – eg. trace, determinant. Gradient of an nth order tensor is a tensor of order n+1 and divergence of an nth order tensor is a tensor of order n-1. ∂ui ∂ui ∂Tij ∇ ⋅u = ∇ ⊗ u = ei ⊗ e j ∇ ⋅ T = e j ∂xi ∂x j ∂xi Integral (divergence) Theorems: T ∫∫RR∇ ⋅u dv = ∂ u⋅n da ∫∫RR∇ ⊗ u dv = ∂ u ⊗ n da ∫∫RR∇ ⋅ T dv = ∂ T n da Kinematics The tensor that plays the most important role in kinematics is the Deformation Gradient x(X) = X + u(X) F = ∇X ⊗ x(X) = I + ∇X ⊗ u(X) F can be used to determine 1.
    [Show full text]