UNIVERSITY of CALIFORNIA, SAN DIEGO Microsporidia Growth And
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF CALIFORNIA, SAN DIEGO Microsporidia growth and host resistance in Nematocida-Caenorhabditis elegans interactions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Keir Morgan Balla Committee in charge: Professor Emily Troemel, Chair Professor Sreekanth Chalasani Professor Lars Eckmann Professor Kit Pogliano Professor Scott Rifkin 2016 Copyright Keir Morgan Balla, 2016 All rights reserved. The Dissertation of Keir Morgan Balla is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION With love to my wife, grandparents, parents and their partners, brothers, in-laws, friends, and cat iv TABLE OF CONTENTS SIGNATURE PAGE….……………………………………………………………………... iii DEDICATION ............................................................................................................... iv TABLE OF CONTENTS ................................................................................................ v LIST OF FIGURES ...................................................................................................... vi LIST OF TABLES ....................................................................................................... viii PREFACE .................................................................................................................... ix ACKNOWLEDGEMENTS ............................................................................................. x VITA ............................................................................................................................ xii ABSTRACT OF THE DISSERTATION ....................................................................... xiii 1 Introduction: Microsporidia growth in the host environment ................................... 1 2 Introduction: Caenorhabiditis elegans as a model for intracellular pathogen infection ................................................................................................................ 16 3 Cell-to-cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia ......................................................................................................... 27 4 A wild C. elegans strain has enhanced epithelial immunity to a natural microsporidian parasite ......................................................................................... 41 5 Associations of host ubiquitin and autophagy proteins with microsporidia cells during elimination of infection in intestinal epithelial cells ..................................... 73 Appendix ..................................................................................................................... 91 v LIST OF FIGURES Figure 2-1. Features of the C. elegans intestine ................................................... 18 Figure 2-2. Intracellular pathogens studied in C. elegans and the cell biology of natural intracellular infections in C. elegans intestinal cells ................ 21 Figure 3-1. A single N. parisii cell can grow to fill most of the C. elegans intestine ... ............................................................................................................ 29 Figure 3-2. N.parisii can spread across and fuse host intestinal cells into a syncytial organ .................................................................................... 30 Figure 3-3. Spreading across host cells is a conserved microsporidia growth strategy with distinct host cell fusion patterns caused by distantly related Nematocida species ................................................................ 30 Figure 3-4. Nematocida vary in growth and virulence, and the density of infection alters developmental speed ................................................................ 31 Figure 3-S1. Quantification of N. parisii spreading across host intestinal cells over time ..................................................................................................... 35 Figure 3-S2. Quantification of red Dendra signal diffusion in 10 uninfected cells of infected animals, or 10 infected cells .................................................. 36 Figure 3-S3. The C. elegans fusogens AFF-1 and EFF-1 are not required for N. parisii-induced fusion of intestinal cells .......................................... 37 Figure 3-S4. Quantification of the number of host cells occupied by parasite by the time of sporulation ............................................................................... 38 Figure 3-S5. N. displodere causes syncytia formation in the anterior hypodermal cells of C. elegans. .............................................................................. 39 Figure 3-S6. Quantification of N. parisii growth rate in size mutants and increased initial infections. ................................................................................... 40 Figure 4-1. Natural variation in C. elegans response to N. parisii infection ........... 45 Figure 4-2. Age-dependent variation in resistance to N. parisii infection .............. 46 Figure 4-3. Age- and strain-dependent variation in clearance of N. parisii infection... ............................................................................................ 48 Figure 4-4. Survival, fecundity, and competition between N2 and HW strains in the presence and absence of infection ..................................................... 50 Figure 4-5. Linkage mapping results for N2 and HW resistance to N. parisii infection ............................................................................................... 52 Figure 4-S1. Lifecycle of N. parisii in C. elegans.. ................................................... 63 Figure 4-S2. Longevity of wild strains in the absence of infection ........................... 64 Figure 4-S3. Correlation between pathogen load and survival upon N. parisii infection.. ............................................................................................. 65 Figure 4-S4. Variation in the response of N2 and HW C. elegans strains to infection by N. parisii strain ERTm1 from France. ............................................. 66 Figure 4-S5. Measurement of feeding rate in N2 and HW L1 animals .................... 67 Figure 4-S6. Analysis of resistance against N. parisii in C. elegans strains that vary in the npr-1 gene ................................................................................. 68 Figure 4-S7. HW resistance to N. parisii is dominant to N2 ..................................... 69 Figure 4-S8. Pathogen load distribution in parents and RIAILs. .............................. 70 Figure 4-S9. Pathogen load in NILs measured by FISH. ......................................... 71 vi Figure 5-1. Host ubiquitin and autophagy proteins localize around microsporidia cells with distinct patterns in the resistant HW strain and susceptible N2 strain .............................................................................................. 78 Figure 5-2. GFP-fusion ubiquitin and autophagy protein expression varies among transgenic N2 and HW strains. ........................................................... 79 Figure 5-3. Clearance of N. ironsii (ERTm5) infections occurs gradually over time in HW animals at both 25°C and 20°C ................................................ 81 Figure 5-4. Nematocida species vary in their ability to evade elimination by L1 stage HW hosts ................................................................................... 83 Figure 5-5. The localization of host ubiquitin around Nematocida cells is most frequent in contexts where infection is eliminated ............................... 84 Figure A.1-1. Linkage mapping results for N2 and HW size and resistance to N. parisii (ERTm1) infection ..................................................................... 94 Figure A.1-2. Natural variation among 54 wild C. elegans strains in resistance to N. ironsii (ERTm5) infection maps to two unique genomic loci ................ 95 Figure A.1-3. Inhibiting gene function by RNAi or mutation to investigate functions for candidate genes identified by GWAS in controlling N. ironsii (ERTm5) levels ................................................................................................... 98 Figure A.2-1. Example of the percentage of infected L1 animals and number of infectious events per L1 animal in samples used for RNAseq .......... 104 Figure A.2-2. Pathogen load and infection-induced host gene expression in samples used for RNAseq ............................................................................... 105 vii LIST OF TABLES Table 2-S1. Pathogens tested for intracellular infection in C. elegans and features of the immune response. ..................................................................... 26 Table 3-S1. Quantification of infection distributions ................................................ 34 Table A.1-1. Ranked genes based on variation between C. elegans strains and correlation with pathogen load. ........................................................... 97 Table A.2-1. RNA sample concentrations and absorbance used for RNAseq ...... 103 Table A.2-2. Uniquely expressed genes in N. parisii-infected HW L1 animals (only genes annotated with gene names are shown) ................................ 107 Table A.2-3. Enrichment for functional classes among genes uniquely expressed in N. parisii-infected HW L1