Geology of a Portion of the Eocene Sylvan Pass Volcanic Center Absaroka Range Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

Geology of a Portion of the Eocene Sylvan Pass Volcanic Center Absaroka Range Wyoming University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1977 Geology of a portion of the Eocene Sylvan Pass volcanic center Absaroka Range Wyoming Daphne D. LaPointe The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation LaPointe, Daphne D., "Geology of a portion of the Eocene Sylvan Pass volcanic center Absaroka Range Wyoming" (1977). Graduate Student Theses, Dissertations, & Professional Papers. 7097. https://scholarworks.umt.edu/etd/7097 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. GEOLOGY OF A PORTION OF THE EOCENE SYLVAN PASS VOLCANIC CENTER, ABSAROKA RANGE. WYOMING by Daphne D. LaPointe A.B., Smith College, 1973 Presented in partial fulfillm ent of the requirements for the degree of Master o f Science UNIVERSITY OF MONTANA 1977 Approved by :hairman, Board^^f Examiners D ^n , Graduate School Date UMI Number: EP37898 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oi«seryAicm PuMiahmg UMI EP37898 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Pro uesf ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 10 6 - 1346 LaPointe, Daphne D ., M.S., May, 1977 Geology Geology o f a Portion o f the Eocene Sylvan Pass Volcanic Center, Absaroka Range, Wyoming (60 pp.) D irector: Donald W. Hyndman Geologic mapping, thin-section petrography, and whole-rock chemistry were used to determine the Eocene volcanic and intrusive history of a portion of the Sylvan Pass volcanic center in the Absaroka Range of northwestern Wyoming. The layered volcanic rocks of the study area consist of over 600 meters of andesitic flows and flow breccias which interfinger to the west with heterolithologic debris-flow breccias and volcanogenic sediments. There is a pro­ gressive upward change in lithology from dominantly pyroxene andésite lower in the pile to dominantly hornblende andésite higher in the pile. The layered sequence is cut by numerous dikes of hornblende andésite and a few of biotite andésite and dacite. A breccia pipe containing fragments o f both Precambrian metamorphic rocks and Eocene volcanic rocks cuts the sequence. A small d io r it ic stock intrudes the layered sequence, hornfelsing and hydrothermally altering the adjacent rocks. Two episodes of faulting have affected the area: one approximately contemporaneous w ith the volcanic activity and one which postdates it. The Sylvan Pass rocks display chemical trends which are typical of the calc-alkaline rock association and similar to trends of other volcanic rocks of the Washburn and Thoroughfare Creek Groups o f the Absaroka Volcanic Supergroup. Overall variations in lithology and thickness of the un its indicate th a t during mid-Eocene time the study area was located on the west flank of an active volcanic center. Chemical and mineralogical variation of the eruptive rocks from more mafic to less mafic with time may support a possible comagmatic origin of the suite from a differentiating magma chamber. 11 ACKNOWLEDGMENTS I would lik e to extend my warmest thanks to the members o f my committee, Donald Hyndman, Graham Thompson, and Walter H ill fo r th e ir help in e d itin g th is thesis. Research was p a rtia lly funded by a G rant-in-Aid to Research from Sigma X i, the S c ie n tific Research Society of North America, to whom I am grateful. I would like to especially thank my husband, Tom Irwin, for his constant encourage­ ment and many helpful discussions of the thesis material. m TABLE OF CONTENTS Page ACKNOWLEDGMENTS ......................................................................................... i i i LIST OF TABLES.......................................................................................... vi LIST OF FIGURES........................................... vi LIST OF PLATES................................................................................................v li CHAPTER I. INTRODUCTION .............................................................................. 1 Previous Work ........................................................................ 1 Regional GeologicFramework ............................................. 4 I I . LOCAL GEOLOGY.............................................................................. 10 Layered Volcanic Rocks ...................................................... 10 Basal S e q u e n ce ................................................................ 10 Debris-Flow Sequence ................................................... 15 Upper S e q u e n ce ................................................................ 17 Breccia P ip e ........................................................................ 20 Intrusive Rocks ....................................................................... 20 D ik e s ..................................................................................... 20 D i o r i t e ................................................................................. 26 A l t e r a t i o n ............................................................................. 31 Volcanic Rocks ..................................................................... 31 Diorite Intrusive ............................................................ 32 IV CHAPTER Page S tr u c tu r e ......................................................................................32 Whole-Rock Chemistry ....................................................... 34 I I I . INTERPRETATIONS..............................................................................45 The Study Area as a Part of the Sylvan Pass Volcanic Center .................................................................... 45 Inferred Volcanic History of the Study Area . 48 Petrologic E volution ............................. 52 Regional Relationships ................................................... 53 IV. SUMMARY AND CONCLUSIONS ........................................................ 55 REFERENCES CITED ....................................................................................... 56 APPENDIX...........................................................................................................60 LIST OF TABLES Table Page 1. Modal percentages of minerals in diorite intrusive . 28 2. Whole-rock chemical analyses o f Sylvan Pass area r o c k s .....................................................................................................35 LIST OF FIGURES Figure Page 1. Generalized geologic map of Absaroka volcanic fie ld . 2 2. Location map of study area in Yellowstone National P a rk ............................................................... 3 3. Generalized stra tig ra p h ie sequence o f Absaroka Volcanic Supergroup .................................................................... 6 4a. Generalized geologic map o f study area ........................... 11 4b. Generalized geologic cross section of study area . 12 5. Stratigraphie section of study area units ................... 16 6. Q-A-P diagram showing d io rite in tru s ive samples. 29 7. Chemical variation diagrams for Sylvan Pass area rocks 37 8. Chemical va ria tio n diagram showing Peacock Index . 39 9. A-F-M plot of Sylvan Pass area rocks ...................................... 40 10. Plot of K 2O versus SiOg for rocks of Absaroka- Gallatin volcanic province ....................................................... 41 11. A-F-M plot for rocks of Absaroka-Gallatin volcanic province ........................................................................ 43 12. Hypothetical cross section o f a typ ica l Absaroka volcanic center ............................................................................. 46 v i LIST OF PLATES Plate Page 1. Zoned plagioclase la th ......................................................14 2. Flow breccia t e x t u r e .......................................................... ^4 3. Hypersthene-andesite f lo w ..............................................14 4. Roadcut o f well-bedded volcanogenic sediments. 14 5. Graded beds in volcanogenic sediments ........................... 19 6. Fragment o f garnet gneiss in breccia p i p e ............19 7. Fragment o f amphibolite in breccia p i p e ................ 19 8. Zoned hornblende phenocryst ................................................ 22 9. Hornblende glomerophenocryst ................................................ 22 10. Opaque-rimmed hornblende and non-rimmed augite . 22 11. Pseudomorph a fte r o liv in e .................................................... 22 12. Biotite-andesite d ik e ......................................................24 13. Diorite intrusive ....................................................................
Recommended publications
  • A Publication of the Wyoming Native Plant Society
    Castilleja A Publication of the Wyoming Native Plant Society October 2004, Volume 23, No. 3 www.uwyo.edu/wyndd/wnps/wnps_home.htm In this issue: Relicts and Refugia . 1 Floristic Diversity of Wyoming Counties . 3 Botanical Novitiates Find Botanical Novelty . 4 Critical Habitat for the Colorado Butterfly Plant . 5 Requiem for a Lawnmower – review. 6 Rocky Mountain Natural History – review . .7 Whitebark Pine - excerpt. 8 Cynoglossum boreale – addition to the state flora 9 Raising Livestock and Lowering Carbon Dioxide . 10 Scholarship Announcement . 11 Natives vs. Imposters. 12 Relicts and Refugia By Bonnie Heidel For all of the breath-taking alpine topography of the Medicine Bow Range, some of its heart-thumping botany lies low across rolling expanses. Three years and three stages of peatland research have documented vast Above: Eriophorum gracile (slender cotton-grass) is montane fen systems in the Medicine Bow circumboreal, with outlying distribution in northwestern Range, refugia for eleven rare Wyoming Wyoming, the Medicine Bow Range and South Park in vascular plant species of concern including five Colorado By B. Heidel relict species previously unknown from southern Wyoming. peatlands harbor close to 10% of the rare Peatland rare species are disjunct or Wyoming plant species of concern. peripheral as they are present in Wyoming, Botanists took a plunge into peatlands denizens of high latitudes, not state and with pilot site surveys on the Medicine Bow and regional endemics that are the focus of most the Shoshone national forests to compile a Wyoming Natural Diversity Database botany working list of peatland rare species, flora, and research. However, review of the Wyoming vegetation at a small number of known or plant species of concern list in 2002 compared inferred peatland study sites (Heidel and against regional peatland floras indicated that Laursen 2003 a, b; Mellmann-Brown 2004).
    [Show full text]
  • Related Magmatism in the Upper Wind River Basin, Wyoming (USA), GEOSPHERE; V
    Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE The leading wisps of Yellowstone: Post–ca. 5 Ma extension- related magmatism in the upper Wind River Basin, Wyoming (USA), GEOSPHERE; v. 14, no. 1 associated with the Yellowstone hotspot tectonic parabola doi:10.1130/GES01553.1 Matthew E. Brueseke1, Anna C. Downey1, Zachary C. Dodd1, William K. Hart2, Dave C. Adams3, and Jeff A. Benowitz4 12 figures; 2 tables; 1 supplemental file 1Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, Kansas 66506, USA 2Department of Geology and Environmental Earth Science, Miami University, 118C Shideler Hall, Oxford, Ohio 45056, USA 3Box 155, Teton Village, Wyoming 83025, USA CORRESPONDENCE: brueseke@ ksu .edu 4Geophysical Institute and Geochronology Laboratory, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA CITATION: Brueseke, M.E., Downey, A.C., Dodd, Z.C., Hart, W.K., Adams, D.C., and Benowitz, J.A., 2018, The leading wisps of Yellowstone: Post–ca. 5 Ma ABSTRACT the issue of linking volcanic events to a specific driving mechanism (Fouch, extension-related magmatism in the upper Wind River 2012; Kuehn et al., 2015). Complicating matters, magmatism often continues Basin, Wyoming (USA), associated with the Yellow- The upper Wind River Basin in northwest Wyoming (USA) is located ~80– long after (e.g., millions of years) the upper plate has been translated away stone hotspot tectonic parabola: Geosphere, v. 14, no. 1, p. 74–94, doi:10.1130/GES01553.1. 100 km southeast of the Yellowstone Plateau volcanic field. While the upper from an upwelling plume (Bercovici and Mahoney, 1994; Sleep, 2003; Shervais Wind River Basin is a manifestation of primarily Cretaceous to Eocene Lara- and Hanan, 2008; Jean et al., 2014).
    [Show full text]
  • Saddlebrooke Hiking Club Hike Database 11-15-2020 Hike Location Hike Rating Hike Name Hike Description
    SaddleBrooke Hiking Club Hike Database 11-15-2020 Hike Location Hike Rating Hike Name Hike Description AZ Trail B Arizona Trail: Alamo Canyon This passage begins at a point west of the White Canyon Wilderness on the Tonto (Passage 17) National Forest boundary about 0.6 miles due east of Ajax Peak. From here the trail heads west and north for about 1.5 miles, eventually dropping into a two- track road and drainage. Follow the drainage north for about 100 feet until it turns left (west) via the rocky drainage and follow this rocky two-track for approximately 150 feet. At this point there is new signage installed leading north (uphill) to a saddle. This is a newly constructed trail which passes through the saddle and leads downhill across a rugged and lush hillside, eventually arriving at FR4. After crossing FR4, the trail continues west and turns north as you work your way toward Picketpost Mountain. The trail will continue north and eventually wraps around to the west side of Picketpost and somewhat paralleling Alamo Canyon drainage until reaching the Picketpost Trailhead. Hike 13.6 miles; trailhead elevations 3471 feet south and 2399 feet north; net elevation change 1371 feet; accumulated gains 1214 northward and 2707 feet southward; RTD __ miles (dirt). AZ Trail A Arizona Trail: Babbitt Ranch This passage begins just east of the Cedar Ranch area where FR 417 and FR (Passage 35) 9008A intersect. From here the route follows a pipeline road north to the Tub Ranch Camp. The route continues towards the corrals (east of the buildings).
    [Show full text]
  • Yellowstone National Park Geologic Resource Evaluation Scoping
    Geologic Resource Evaluation Scoping Summary Yellowstone National Park This document summarizes the results of a geologic resource evaluation scoping session that was held at Yellowstone National Park on May 16–17, 2005. The NPS Geologic Resources Division (GRD) organized this scoping session in order to view and discuss the park’s geologic resources, address the status of geologic maps and digitizing, and assess resource management issues and needs. In addition to GRD staff, participants included park staff and cooperators from the U.S. Geological Survey and Colorado State University (table 1). Table 1. Participants of Yellowstone’s GRE Scoping Session Name Affiliation Phone E-Mail Bob Volcanologist, USGS–Menlo Park 650-329-5201 [email protected] Christiansen Geologist/GRE Program GIS Lead, NPS Tim Connors 303-969-2093 [email protected] Geologic Resources Division Data Stewardship Coordinator, Greater Rob Daley 406-994-4124 [email protected] Yellowstone Network Supervisory Geologist, Yellowstone Hank Heasler 307-344-2441 [email protected] National Park Geologist, NPS Geologic Resources Bruce Heise 303-969-2017 [email protected] Division Cheryl Geologist, Yellowstone National Park 307-344-2208 [email protected] Jaworowski Katie Geologist/Senior Research Associate, 970-586-7243 [email protected] KellerLynn Colorado State University Branch Chief, NPS Geologic Resources Carol McCoy 303-969-2096 [email protected] Division Ken Pierce Surficial Geologist, USGS–Bozeman 406-994-5085 [email protected] Supervisory GIS Specialist, Yellowstone Anne Rodman 307-344-7381 [email protected] National Park Shannon GIS Specialist, Yellowstone National Park 307-344-7381 [email protected] Savage Monday, May 16, involved a welcome to Yellowstone National Park and an introduction to the Geologic Resource Evaluation (GRE) Program, including status of reports and digital maps.
    [Show full text]
  • Derivation of Intermediate to Silicic Magma from the Basalt Analyzed at the Vega 2 Landing Site, Venus
    RESEARCH ARTICLE Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus J. Gregory Shellnutt* National Taiwan Normal University, Department of Earth Sciences, Taipei, Taiwan * [email protected] Abstract a1111111111 a1111111111 Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site a1111111111 indicates that intermediate to silicic liquids can be generated by fractional crystallization and a1111111111 equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 a1111111111 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) composi- tions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at OPEN ACCESS all pressures but requires relatively high temperatures ( 950ÊC) to generate the initial melt Citation: Shellnutt JG (2018) Derivation of at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be intermediate to silicic magma from the basalt generated at much lower temperatures (< 800ÊC). Anhydrous partial melt modeling yielded analyzed at the Vega 2 landing site, Venus. PLoS mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature ONE 13(3): e0194155. https://doi.org/10.1371/ journal.pone.0194155 required to produce the first liquid is very high ( 1130ÊC). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate Editor: Axel K Schmitt, Heidelberg University, GERMANY that, under certain conditions, the Vega 2 composition can generate silicic liquids that pro- duce granitic and rhyolitic rocks.
    [Show full text]
  • Conservation in Yellowstone National Park Final Report on the COVER Wolverine Tracks in the Greater Yellowstone Ecosystem
    Wolverine Conservation in Yellowstone National Park Final Report ON THE COVER Wolverine tracks in the Greater Yellowstone Ecosystem. Photo by Jason Wilmot. Wolverine Conservation in Yellowstone National Park Final Report Authors John Squires Kerry Murphy US Forest Service US Forest Service Rocky Mountain Research Station Jackson Ranger District 800 East Beckwith Avenue PO Box 25 Missoula, Montana 59801 Jackson, Wyoming 83001 [email protected] [email protected] (formerly Yellowstone Center for Resources, With contributions from Yellowstone National Park, Wyoming) Robert M. Inman Wildlife Conservation Society Jason Wilmot Wolverine Program Field Office Northern Rockies Conservation Cooperative 222 East Main Street PO Box 2705 Lone Elk 3B Jackson, Wyoming 83001 Ennis, Montana 59729 [email protected] [email protected] Jeff Copeland Mark L. Packila US Forest Service Wildlife Conservation Society Rocky Mountain Research Station Wolverine Program Field Office 800 East Beckwith Avenue 222 East Main Street Missoula, Montana 59801 Lone Elk 3B [email protected] Ennis, Montana 59729 [email protected] Dan Tyers US Forest Service Doug McWhirter Gardiner Ranger District Wyoming Game and Fish Regional Office PO Box 5 2820 State Highway 120 Gardiner, Montana 59030 Cody, Wyoming 82414 [email protected] National Park Service Yellowstone National Park Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-2011-02 March 2011 Suggested citation: Murphy, K., J. Wilmot, J. Copeland, D. Tyers, J. Squires, R. M. Inman, M. L. Packila, D. McWhirter. 2011. Wolverine conservation in Yellowstone National Park: Final report. YCR-2011-02. National Park Service, Yellowstone National Park, Yellowstone Center for Resources, Yellowstone National Park, Wyoming.
    [Show full text]
  • Curt Teich Postcard Archives Towns and Cities
    Curt Teich Postcard Archives Towns and Cities Alaska Aialik Bay Alaska Highway Alcan Highway Anchorage Arctic Auk Lake Cape Prince of Wales Castle Rock Chilkoot Pass Columbia Glacier Cook Inlet Copper River Cordova Curry Dawson Denali Denali National Park Eagle Fairbanks Five Finger Rapids Gastineau Channel Glacier Bay Glenn Highway Haines Harding Gateway Homer Hoonah Hurricane Gulch Inland Passage Inside Passage Isabel Pass Juneau Katmai National Monument Kenai Kenai Lake Kenai Peninsula Kenai River Kechikan Ketchikan Creek Kodiak Kodiak Island Kotzebue Lake Atlin Lake Bennett Latouche Lynn Canal Matanuska Valley McKinley Park Mendenhall Glacier Miles Canyon Montgomery Mount Blackburn Mount Dewey Mount McKinley Mount McKinley Park Mount O’Neal Mount Sanford Muir Glacier Nome North Slope Noyes Island Nushagak Opelika Palmer Petersburg Pribilof Island Resurrection Bay Richardson Highway Rocy Point St. Michael Sawtooth Mountain Sentinal Island Seward Sitka Sitka National Park Skagway Southeastern Alaska Stikine Rier Sulzer Summit Swift Current Taku Glacier Taku Inlet Taku Lodge Tanana Tanana River Tok Tunnel Mountain Valdez White Pass Whitehorse Wrangell Wrangell Narrow Yukon Yukon River General Views—no specific location Alabama Albany Albertville Alexander City Andalusia Anniston Ashford Athens Attalla Auburn Batesville Bessemer Birmingham Blue Lake Blue Springs Boaz Bobler’s Creek Boyles Brewton Bridgeport Camden Camp Hill Camp Rucker Carbon Hill Castleberry Centerville Centre Chapman Chattahoochee Valley Cheaha State Park Choctaw County
    [Show full text]
  • Landsat Evaluation of Trumpeter Swan Historical Nesting Sites In
    Eastern Kentucky University Encompass Online Theses and Dissertations Student Scholarship 2014 Landsat Evaluation Of Trumpeter Swan Historical Nesting Sites In Yellowstone National Park Laura Elizabeth Cockrell Eastern Kentucky University, [email protected] Follow this and additional works at: https://encompass.eku.edu/etd Part of the Ecology and Evolutionary Biology Commons, and the Ornithology Commons Recommended Citation Cockrell, Laura Elizabeth, "Landsat Evaluation Of Trumpeter Swan Historical Nesting Sites In Yellowstone National Park" (2014). Online Theses and Dissertations. 222. https://encompass.eku.edu/etd/222 This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact [email protected]. LANDSAT EVALUATION OF TRUMPETER SWAN HISTORICAL NESTING SITES IN YELLOWSTONE NATIONAL PARK By Laura Elizabeth Cockrell Bachelor of Science California State University, Chico Chico, California 2007 Submitted to the Faculty of the Graduate School of Eastern Kentucky University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 2014 Copyright © Laura Elizabeth Cockrell, 2014 All rights reserved ii DEDICATION This thesis is dedicated to my family and friends for their unwavering support during this adventure. iii ACKNOWLEDGMENTS This research was made possible through funding from the Yellowstone Park Foundation and the Society of Wetland Scientists Student Research Grant for support of field work, and by a Graduate Assistantship and Research Assistantship from the Department of Biological Sciences at Eastern Kentucky University. Thank you to Dr. Bob Frederick for his insight and persistence and for providing the GIS lab and to Dr.
    [Show full text]
  • Summits on the Air – ARM for USA - Colorado (WØC)
    Summits on the Air – ARM for USA - Colorado (WØC) Summits on the Air USA - Colorado (WØC) Association Reference Manual Document Reference S46.1 Issue number 3.2 Date of issue 15-June-2021 Participation start date 01-May-2010 Authorised Date: 15-June-2021 obo SOTA Management Team Association Manager Matt Schnizer KØMOS Summits-on-the-Air an original concept by G3WGV and developed with G3CWI Notice “Summits on the Air” SOTA and the SOTA logo are trademarks of the Programme. This document is copyright of the Programme. All other trademarks and copyrights referenced herein are acknowledged. Page 1 of 11 Document S46.1 V3.2 Summits on the Air – ARM for USA - Colorado (WØC) Change Control Date Version Details 01-May-10 1.0 First formal issue of this document 01-Aug-11 2.0 Updated Version including all qualified CO Peaks, North Dakota, and South Dakota Peaks 01-Dec-11 2.1 Corrections to document for consistency between sections. 31-Mar-14 2.2 Convert WØ to WØC for Colorado only Association. Remove South Dakota and North Dakota Regions. Minor grammatical changes. Clarification of SOTA Rule 3.7.3 “Final Access”. Matt Schnizer K0MOS becomes the new W0C Association Manager. 04/30/16 2.3 Updated Disclaimer Updated 2.0 Program Derivation: Changed prominence from 500 ft to 150m (492 ft) Updated 3.0 General information: Added valid FCC license Corrected conversion factor (ft to m) and recalculated all summits 1-Apr-2017 3.0 Acquired new Summit List from ListsofJohn.com: 64 new summits (37 for P500 ft to P150 m change and 27 new) and 3 deletes due to prom corrections.
    [Show full text]
  • Lunar Crater Volcanic Field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA)
    Research Paper GEOSPHERE Lunar Crater volcanic field (Reveille and Pancake Ranges, Basin and Range Province, Nevada, USA) 1 2,3 4 5 4 5 1 GEOSPHERE; v. 13, no. 2 Greg A. Valentine , Joaquín A. Cortés , Elisabeth Widom , Eugene I. Smith , Christine Rasoazanamparany , Racheal Johnsen , Jason P. Briner , Andrew G. Harp1, and Brent Turrin6 doi:10.1130/GES01428.1 1Department of Geology, 126 Cooke Hall, University at Buffalo, Buffalo, New York 14260, USA 2School of Geosciences, The Grant Institute, The Kings Buildings, James Hutton Road, University of Edinburgh, Edinburgh, EH 3FE, UK 3School of Civil Engineering and Geosciences, Newcastle University, Newcastle, NE1 7RU, UK 31 figures; 3 tables; 3 supplemental files 4Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, Ohio 45056, USA 5Department of Geoscience, 4505 S. Maryland Parkway, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA CORRESPONDENCE: gav4@ buffalo .edu 6Department of Earth and Planetary Sciences, 610 Taylor Road, Rutgers University, Piscataway, New Jersey 08854-8066, USA CITATION: Valentine, G.A., Cortés, J.A., Widom, ABSTRACT some of the erupted magmas. The LCVF exhibits clustering in the form of E., Smith, E.I., Rasoazanamparany, C., Johnsen, R., Briner, J.P., Harp, A.G., and Turrin, B., 2017, overlapping and colocated monogenetic volcanoes that were separated by Lunar Crater volcanic field (Reveille and Pancake The Lunar Crater volcanic field (LCVF) in central Nevada (USA) is domi­ variable amounts of time to as much as several hundred thousand years, but Ranges, Basin and Range Province, Nevada, USA): nated by monogenetic mafic volcanoes spanning the late Miocene to Pleisto­ without sustained crustal reservoirs between the episodes.
    [Show full text]
  • Mineral Resources of the Owl Creek Wilderness Study Area, Hot Springs County, Wyoming
    Mineral Resources of the Owl Creek Wilderness Study Area, Hot Springs County, Wyoming U.S. GEOLOGICALSURVEY BULLETIN 1756-D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis­ of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from WASHINGTON, D.C.-Main Interior Bldg.
    [Show full text]
  • 10Macdonald YELL NR Testing UM Final Rpt.Pdf
    THE 2010 CLASS III ARCHEOLOGICAL INVESTIGATION FOR SHEEPEATER CLIFF SITE 48YE29, YELLOWSTONE NATIONAL PARK, WYOMING By Matthew Werle Michael Livers, M.A. Prepared For Elaine S. Hale, Archeologist Branch of Environmental Compliance Yellowstone Center for Resources P.O. Box 168 Yellowstone National Park, WY 82190 Submitted by Douglas H. MacDonald, Ph.D., R.P.A. Department of Anthropology University of Montana, Missoula 59812 YELL-2010-SCI-5656 Yellowstone Study No. YELL-05656 December 11, 2011 ABSTRACT The University of Montana archeological team, under the direction of Associate Professor Douglas H. MacDonald, conducted a full inventory of archaeological resources at the Sheepeater Cliff site (48YE29) in 2009- 2010. Yellowstone National Park (YNP) proposes road widening and parking lot additions at the popular visitor attraction. The Sheepeater Cliff site (48YE29) is a prehistoric lithic scatter located near a popular rest stop and parking lot along the Norris to Mammoth Hot Springs Highway, approximately two miles south of Swan Lake Flats, in the northern portion of YNP. The site is three miles southwest of Bunsen Peak, bounded by the Gardner River to the southeast and the columnar basalt cliffs from which it derives its name. The Gardner River meets with Glenn Creek upon exiting the Sheepeater Canyon and then merges with Lava Creek seven miles to the northeast. The river then combines with the Yellowstone just outside of Gardiner, MT. Just upstream of 48YE29 is the nexus of the Gardner River, where Obsidian Creek and Indian Creek unite. 48YE29 was originally recorded by Ann Johnson in 1989. The University of Montana (UM) conducted Class III subsurface testing during the 2009 UM field season as part of a Section 110 inspired proactive management funded by YNP.
    [Show full text]