About Internet2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redclara Went from Being an Illusion to Become a Mature Institution”
Invitation - Call Shall we talk seriously about natural disasters and the end of the world? Rafael Ibarra, RAICES president “RedCLARA went from being an illusion to become a mature institution” MERCOSUR’s Virtual School was launched March 2012 - n°30, year 8 This Project is funded by the European Union A project implemented by RedCLARA European Commission Press Contact: EuropeAid Cooperation Office María José López Pourailly Directorate B2 - Latin America PR & Communications Manager - CLARA @LIS Programme [email protected] Rue Joseph II, 54 J54 4/13 (+56) 2 584 86 18, extension 504 B-1049 Brussels Avenida del Parque 4680-A BELGIUM Edifico Europa, oficina 505 Ciudad Empresarial Huechuraba Santiago CHILE «The European Union is constituted by 27 member states which have decided to progressively join their practical knowledge, their resources and their destinies. Over an expansion period of 50 years, together they have built a stability, democracy and sustainable development zone, and have also preserved cultural diversity, tolerance and individual liberties. The European Union is committed to sharing its achievements and values with countries and peoples which are beyond its borders». The European Commission is the executive body of the European Union. Contents 6 Open Call to present papers for TICAL 2012 Conference 7 Register and participate in the First Virtual Day of Culture Fernando Liello, ELLA Project Coordinator 8 “Latin America needs the new submarine connection to Europe because it cannot rely only on connectivity to -
Esnet: Advanced NETWORKING for SCIENCE
ENERGY SCIENCES NETWORK ESnet: Advanced NETWORKING for SCIENCE Researchers around the world using advanced computing for scientific discovery are connected via the DOE-operated Energy Sciences Network (ESnet). By providing a reliable, high-performance communications infrastructure, ESnet facilitates the large-scale, collaborative science endeavors fundamental to Office of Science missions. Energy Sciences Network tive science. These include: sharing of massive In many ways, the dramatic achievements of 21st amounts of data, supporting thousands of collab- century scientific discovery—often involving orators worldwide, distributed data processing enormous data handling and remote collabora- and data management, distributed simulation, tion requirements—have been made possible by visualization, and computational steering, and accompanying accomplishments in high-per- collaboration with the U.S. and international formance networking. As increasingly advanced research and education (R&E) communities. supercomputers and experimental research facil- To ensure that ESnet continues to meet the ities have provided researchers with powerful requirements of the major science disciplines a tools with unprecedented capabilities, advance- new approach and a new architecture are being ments in networks connecting scientists to these developed. This new architecture includes ele- tools have made these research facilities available ments supporting multiple, high-speed national to broader communities and helped build greater backbones with different characteristics—redun- collaboration within these communities. The dancy, quality of service, and circuit oriented DOE Office of Science (SC) operates the Energy services—all the while allowing interoperation of Sciences Network (ESnet). Established in 1985, these elements with the other major national and ESnet currently connects tens of thousands of international networks supporting science. -
Aarnet Australia's Academic and Research Network
aarnet Australia's Academic and Research Network IPv6 network day 1. Agenda The previous two days training have investigated the IPv6 protocol and its configuration on Cisco Systems© IOS. Today this knowledge is put to use to construct a test network. 2. Test network 2.1 Topology The test network is a sample university network. ISP Border Firewall Core Switch Figure 1. Sample university network. To save time we will not configure a firewall, but will configure the network as if an OSPFv3-speaking firewall is in place. 2.2 Addressing Each sample university is allocated an address range. From that you must develop an addressing plan which includes: 2.2.1 Host subnet addresses These will be EUI-64 subnets. In a real network these addresses would be allocated in blocks which can be aggregated at each site edge. Our sample network is too small for this. 2.2.2 Link addresses for router-router links These will be /64 subnets. ::1 is used for the upstream, ::2 for the downstream. Router addresses are often replicated throughout router Ð 1 Ð configurations, so using a /64 is more maintainable than the dynamic interface addresses of EUI-64. 2.2.3 Control and administrative addresses for routers Most networking equipment assigns the router an interface in the control plane. Cisco IOS typically uses ªLoopback0º. This is a /128 address. Some routers treat higher addresses as administrative domain addresses by default, so reserve the highest /64 for loopback addresses. The DNS entry for control plane addresses usually contains the name of the router. -
Trapped in a Virtual Cage: Chinese State Repression of Uyghurs Online
Trapped in a Virtual Cage: Chinese State Repression of Uyghurs Online Table of Contents I. Executive Summary..................................................................................................................... 2 II. Methodology .............................................................................................................................. 5 III. Background............................................................................................................................... 6 IV. Legislation .............................................................................................................................. 17 V. Ten Month Shutdown............................................................................................................... 33 VI. Detentions............................................................................................................................... 44 VII. Online Freedom for Uyghurs Before and After the Shutdown ............................................ 61 VIII. Recommendations................................................................................................................ 84 IX. Acknowledgements................................................................................................................. 88 Cover image: Composite of 9 Uyghurs imprisoned for their online activity assembled by the Uyghur Human Rights Project. Image credits: Top left: Memetjan Abdullah, courtesy of Radio Free Asia Top center: Mehbube Ablesh, courtesy of -
E-Learning R&D Projects Initiated During Xiith Plan Period
Ongoing R&D projects of E-Infrastructure initiated during XIIth Plan period 1. Project Title Setting up the Eduroam Services in India Executive Agency: ERNET India Principal Shri. Meherban Singh Investigator: Address: ERNET India 5th Floor, Block –I A Wing, DMRC IT Park, Shastri Park New Delhi-110053 Phone 9818955800,23765375 : Fax: Email: [email protected] URL: http://www.eis.ernet.in/ Project Objectives: To implement the Eduroam services in India. Eduroam (education and roaming) allows users (researchers, academicians, teachers, students, professionals, etc) to securely access the Internet from any Eduroam-enabled institution either nationally as well as internationally from the premises of any of the participating institutions. Achievements/ 140 No. of institutes connected so far Outcome Monitoring server for members of radius servers in India has been created. Log Server for keeping the access log of all the users connected has been created. Database server having information related to each user in eduroam setup of India has been created. Helpdesk and Trouble Ticketing Systems(TTS) for eduroam users has been created. Start Date May 2012 Duration (36 months) extended for 12 months (in months): Status of Project: Ongoing 2. Project Title IPv6 Training Program for Staff of Government/Ministries and Institutions. Executive Agency: ERNET India Principal Shri.Praveen Misra Investigator: Address: ERNET India 5th Floor, Block –I A Wing, DMRC IT Park, Shastri Park New Delhi-110053 Phone 9818955800,23765375 : Fax: Email: [email protected] URL: http://www.eis.ernet.in/ Project Objectives: The objective of the proposal is capacity building in the area of next generation Internet protocol IPv6 to enhance adoption and deployment of IPv6 specially in Government organizations and associated institutions. -
Deliverable D8.4 Final Report on Sustainability and Exploitation
07-07-2020 Deliverable D8.4 Final Report on Sustainability and Exploitation Deliverable D8.4 Contractual Date: 31-05-2020 Actual Date: 07-07-2020 Grant Agreement No.: 732049 – Up2U Work Package: WP8 Task Item: Task 8.1. Nature of Deliverable: R (Report) Dissemination Level: PU (Public) Lead Partner: GWDG Authors: Faraz Fatemi Moghaddam (GWDG), Philipp Wieder (GWDG), Aytaj Badirova (GWDG), Erik Kikkenborg (GÉANT), Gyöngyi Horváth (GÉANT), Casper Dreef (GÉANT), Andrea Corleto (GARR), Eleonora Napolitano (GARR), Gabriella Paolini (GARR), Krzysztof Kurowski (PSNC), Raimundas Tuminauskas (PSNC), Michal Zimniewicz (PSNC), Nelson Dias (FCT|FCCN), Antonio Vieira Castro (ISEP), Mary Grammatikou (NTUA), Dimitris Pantazatos (NTUA), Barbara Tóth (KIFÜ), Csilla Gödri (KIFÜ), Gytis Cibulskis (KTU), Jack Barokas (TAU), Ingrid Barth (TAU), Eli Shmueli (IUCC), Nadav Kavalerchik (IUCC), Orit Baruth (IUCC), Domingo Docampo (UVigo), Iván Otero (UVigo), Vicente Goyanes (TELTEK), Xoan Vidal (TELTEK), Stefano Lariccia (UROMA), Marco Montanari (UROMA), Nadia Sansone (UROMA), Giovanni Toffoli (UROMA), Allan Third (OU) © GÉANT Association on behalf of the Up2U project. The innovation action leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 732049 – Up2U. Table of Contents Executive Summary 1 1 Introduction 2 2 Business Models – Exploitation Activities 3 2.1 Up2U Tools for NRENs and Schools 4 2.1.1 The Centralised Model 5 2.1.2 openUp2U 5 2.1.3 The National Model 6 2.2 -
Resume of Dr. ARUNJYOTI SARKAR, Phd [email protected]
Resume of Dr. ARUNJYOTI SARKAR, PhD [email protected] Designation: Assistant Professor Department of Ocean Engineering & Naval Architecture IIT Kharagpur, Dist.- West Midnapur West Bengal, India, Pin- 721302 Contact numbers: 03222-282852 (office), 03222-282853 (residence) Academic Qualification Degree During Major University / Institution B.E. 1997 - 2001 Civil Engineering Bengal Engineering College, Shibpore (currently IIEST Shibpore) M.Tech 2003 - 2005 Ocean Engineering IIT Madras PhD 2010 - 2013 Offshore Engineering University of Stavanger, Norway Work experience Position Held Name of Institute From To Job description / Company Assistant Professor IIT Kharagpur 2014 Till Teaching and research in ocean date engineering Principal Engineer Subsea 7, Norway 2007 2014 Installation analysis of subsea (Hydrodyn and Ocean structures, on-bottom stability of Tech group) covers, etc. Offshore Structural Technip India and 2005 2007 Design of offshore structures (FPSO Engineer France topside, subsea equipment, etc.) (SURF group) JRF CMERI Durgapur 2002 2003 Health assessment of old structures Management Trainee OSE Ltd. 2001 2002 Supervising road and bridge construction work at a site of NH6 Subjects taken at the current position Ship Strength (UG core, Naval Arch), Marine Operation and Analysis (PG elective, Ocean Eng) Engineering Drawing, Engineering Mechanics (1st year students) Publications (List of papers published in SCI Journals, in year wise descending order). Sl. Authors Title Name of Vol Page Year No. Journal 1 S Koley, A Interaction -
Internet2: a Comparative Study and Technological Solution to Achieve High Speed Networks
Himanshu Agarwal / Indian Journal of Computer Science and Engineering Vol 1 No 3, 157-160 INTERNET2: A COMPARATIVE STUDY AND TECHNOLOGICAL SOLUTION TO ACHIEVE HIGH SPEED NETWORKS HIMANSHU AGARWAL Department of Computer Science & Information Technology, Moradabad Institute of Technology, Moradabad-244001 (Uttar Pradesh), India Email: [email protected] Abstract In current Indian scenario whenever it is required to access very large amount of data such as games or some commercial applications through commodity internet (internet1), speed becomes hurdle. It becomes tolerable for some applications but no one wants to bother in case of education and research. Now the world becomes commercialized and don’t want to bother with speed. Therefore the next generation of Internet infrastructure known as Internet2 or UCAID (University Corporation for Advance Internet Development) for 21st century comes in the focus of scientists, to improve quality of life through research and education. In this paper thorough analysis and comparative study of various educational networks, market scenario and Internet2 has been done, so all pros and cons become visualized to get the effect of internet2 in industries, research and development. Keywords: Internet2; Abilene network; gigapops; high speed networks. 1. Introduction Internet2 is a second generation network serving universities and research institutes by moving the data at a rate of 10 gigabits per second and more ,compared with 5.1 or so megabits old fashioned commodity internet. Internet2 moves data 100 to 1,000 times faster than internet1. Its GigaPoPs (points of presence) provide regional high-performance aggregation points; for member institutions, typically local campus networks provide no less than 100 Mbps to the desktop. -
Cybermetrics of the Indian Universities
View metadata,citationandsimilarpapersatcore.ac.uk Cybermetrics of the Indian Universities Isidro F. Aguillo InternetLab. CINDOC -CSIC. Spain [email protected] International Workshop on Webometrics, Informetrics brought toyouby and Scientometrics & 5th COLLNET Meeting provided by Roorkee, India, March 2 -5, 2004 E-LIS repository CORE Web indicators Huge international effort on the way to develop Information Society indicators Technological indicators Economic indicators Social indicators Lacking a similar effort to obtain web indicators The contents are the key Some questions open: • Digital divide • Cultural colonialism • Over-representation of English Isidro F. Aguillo, CINDOC-CSIC, 2004 Academic and R&D Web Universities and R&D institutions websites can reflect the output of academic and research activities better than traditional paper publications The future of informal scholarly communication Peer-review is not in danger The audience of the Web is far larger than that of other means of scientific communication Millions instead of hundreds Hypertext nature of the Web allows the discovery of hidden patterns Motivations for linking exceed those for citation New discipline: Cyber-science-techno-econo-metrics Isidro F. Aguillo, CINDOC-CSIC, 2004 Cybermetrics Quantitative study of the contents and communication processes on the Internet Cyberscientometrics ~ cybermetrics Webometrics: Focused on the WWW Topics • Informetric distributions and topology • Dynamics and evolution • Link & “sitation” analysis • Indicators: -
New Zealand's High Speed Research Network
Report prepared for the Ministry of Business, Innovation and Employment New Zealand’s high speed research network: at a critical juncture David Moore, Linda Tran, Michael Uddstrom (NIWA) and Dean Yarrall 05 December 2018 About Sapere Research Group Limited Sapere Research Group is one of the largest expert consulting firms in Australasia and a leader in provision of independent economic, forensic accounting and public policy services. Sapere provides independent expert testimony, strategic advisory services, data analytics and other advice to Australasia’s private sector corporate clients, major law firms, government agencies, and regulatory bodies. Wellington Auckland Level 9, 1 Willeston St Level 8, 203 Queen St PO Box 587 PO Box 2475 Wellington 6140 Auckland 1140 Ph: +64 4 915 7590 Ph: +64 9 909 5810 Fax: +64 4 915 7596 Fax: +64 9 909 5828 Sydney Canberra Melbourne Suite 18.02, Level 18, 135 GPO Box 252 Level 8, 90 Collins Street King St Canberra City ACT 2601 Melbourne VIC 3000 Sydney NSW 2000 Ph: +61 2 6267 2700 GPO Box 3179 GPO Box 220 Fax: +61 2 6267 2710 Melbourne VIC 3001 Sydney NSW 2001 Ph: +61 3 9005 1454 Ph: +61 2 9234 0200 Fax: +61 2 9234 0201 Fax: +61 2 9234 0201 For information on this report please contact: Name: David Moore Telephone: +64 4 915 5355 Mobile: +64 21 518 002 Email: [email protected] Page i Contents Executive summary ..................................................................................................... vii 1. Introduction ...................................................................................................... 1 2. NRENs are essential to research data exchange .............................................. 2 2.1 A long history of NRENs ....................................................................................... 2 2.1.1 Established prior to adoption of TCP/IP ............................................ -
AUSTRALIAN NATIONAL PEERING POLICY Guidelines for Potential National Peering Partners
AUSTRALIAN NATIONAL PEERING POLICY Guidelines for potential national peering partners LAST UPDATED SEPTEMBER 2021 aarnet.edu.au CONTENTS 1. Introduction ........................................................................................................................................ 3 2. Interconnection Requirements ....................................................................................................... 4 Bilateral Peering. ...................................................................................................................................................4 Geographic Scope. ..............................................................................................................................................4 Traffic Exchange Ratio. ........................................................................................................................................4 Traffic Exchange Volume. ...................................................................................................................................4 Backbone Capacity. .............................................................................................................................................4 Dedicated peering. ...............................................................................................................................................4 Access to the AARNet Mirror. ............................................................................................................................4 -
Broadband for Education: the National Internet2 K20 Initiative’S and WICHE’S Recommendations to the FCC
Broadband for Education: The National Internet2 K20 Initiative’s and WICHE’s Recommendations to the FCC Who are we? Internet2: We bring together Internet2’s world-class network and research community members with innovators from colleges and universities, primary and secondary schools, libraries, museums and other educational institutions, the full spectrum of America’s education community, including both formal and informal education. The National K20 Initiative extends new technologies, applications, and rich educational content to all students, their families and communities – no matter where they’re located. We have had immense success connecting the institutions above – in fact, over 65,000 institutions are now connected to the National Internet2 network – but to realize fully the potential of Internet2 all institutions must have adequate bandwidth. What follows are principles we endorse and urge the FCC to adopt. We divide our recommendations into two interrelated categories: connectivity and e-rate support. Western Interstate Commission for Higher Education (WICHE): WICHE and its 15 member states work to improve access to higher education and ensure student success. Our student exchange programs, regional initiatives, and our research and policy work allow us to assist constituents in the West and beyond. Equitable access to broadband technology and, in particular, technology-enabled education, is among our strategies. At present much of the West, particularly the “frontier West,” has little or no access to adequate bandwidth. Many of our institutions are not among those connected by and participating in the Internet2 K20 Initiative. The principles and recommendations below would remedy this situation. Our recommendations: (1) Connectivity • Elementary schools, secondary schools, and branch libraries should be connected at 100 Mbps to 10 Gbps.