Eastern Marsh Harrier Chu-Hi (Jpn) Circus Spilonotus Morphology and Classification Still Undiscovered Nesting Grounds in Hokkaido in Particular
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Circus Approximans) in New Zealand
136 Notornis, 2008, Vol. 55: 136-139 0029-4470 © The Ornithological Society of New Zealand, Inc. Relative abundance of Australasian harriers (Circus approximans) in New Zealand WADE L. EAKLE U.S. Army Corps of Engineers, South Pacific Division, 1455 Market Street, San Francisco, CA 94103 U.S.A. [email protected] Abstract I conducted road counts on the North I and South I of New Zealand in Mar 2006 to evaluate relative abundance and distribution of Australasian harriers (Circus approximans). Over 1670 km were traveled on the North I with 98 harriers detected, yielding 1 harrier/17.0 km traveled. Over 2430 km were traveled on the South I with 145 harriers detected, yielding 1 harrier/16.8 km traveled, with no difference in number of harriers detected/km traveled between islands (P > 0.25). Three survey routes, 1 on southeastern North I and 2 on northeastern and east-central South I, were particularly productive yielding 1 harrier/7.1-11.1 km traveled. My results provide empirical support for the frequently cited description that the Australasian harrier is now New Zealand’s most abundant native diurnal raptor, and has largely benefited from the conversion of land from native forest and scrub to pasture at the likely expense of other native and endemic species. Eakle, W.L. 2008. Relative abundance of Australasian harriers (Circus approximans) in New Zealand. Notornis 55(3): 136-139. Keywords Australasian harrier; Circus approximans; abundance; road counts; New Zealand INTRODUCTION and South Is, while the endemic New Zealand The South Pacific islands of New Zealand, including falcon (Falco novaeseelandiae) is described as the larger North and South Is, the Chatham Is, and uncommon and less widespread. -
The Nest, Eggs, and Diet of the Papuan Harrier from Eastern New Guinea
J. Raptor Res. 44(1):12–18 E 2010 The Raptor Research Foundation, Inc. THE NEST, EGGS, AND DIET OF THE PAPUAN HARRIER FROM EASTERN NEW GUINEA ROBERT E. SIMMONS1 DST/NRF Centre of Excellence, FitzPatrick Institute, University of Cape Town, Rondebosch 7701, South Africa ABSTRACT.—The Papuan Harrier (Circus spilonotus spilothorax), currently classified as a subspecies of the Eastern Marsh-Harrier (C. spilonotus), is endemic to the island of New Guinea and may be in need of conservation attention because of threats from grassland burning. I here detail the discovery of the first known nests in lowland Papua New Guinea and provide egg dimensions and prey data. Both nests were initiated in early April, in damp rank grassland, and contained three small chicks in mid-May. The only egg measurements, combined with one previously published record, suggest large egg volume and concomitant large female body size (estimated to be ca. 890 g). At this size, this may be the world’s largest harrier. Fire destroyed both nests within 5 wk of their discovery. An atypically slow foraging style and a preponderance of game birds and large rats (Rattus spp.) in the pellets and prey remains are consistent with large body size. Further studies of the bird’s ecology and breeding are needed for a comprehensive understanding of its conservation status and threats to its population. KEY WORDS: Papuan Harrier; Circus spilonotus spilothorax; Eastern Marsh-Harrier; Circus spilonotus; body size; diet; egg size; foraging; Papua New Guinea. NIDO, HUEVOS Y DIETA DE CIRCUS SPILONOTUS SPILOTHORAX DEL ESTE DE NUEVA GUINEA RESUMEN.—Circus spilonotus spilothorax, actualmente clasificada como una subespecie de C. -
Harrier References
Introduction This is the final version of the Harrier's list, no further updates will be made. Grateful thanks to Wietze Janse and Tom Shevlin (www.irishbirds.ie) for the cover images and all those who responded with constructive feedback. All images © the photographers. Please note that this and other Reference Lists I have compiled are not exhaustive and are best employed in conjunction with other sources. Joe Hobbs Index The general order of species follows the International Ornithologists' Union World Bird List (Gill, F. & Donsker, D. (eds.) 2019. IOC World Bird List. Available from: https://www.worldbirdnames.org/ [version 9.1 accessed January 2019]). Final Version Version 1.4 (January 2019). Cover Main image: Western Marsh Harrier. Zevenhoven, Groene Jonker, Netherlands. 3rd May 2011. Picture by Wietze Janse. Vignette: Montagu’s Harrier. Great Saltee Island, Co. Wexford, Ireland. 10th May 2008. Picture by Tom Shevlin. Species Page No. African Marsh Harrier [Circus ranivorus] 8 Black Harrier [Circus maurus] 10 Cinereous Harrier [Circus cinereus] 17 Eastern Marsh Harrier [Circus spilonotus] 6 Hen Harrier [Circus cyaneus] 11 Long-winged Harrier [Circus buffoni] 9 Malagasy Harrier [Circus macrosceles] 9 Montagu's Harrier [Circus pygargus] 20 Northern Harrier [Circus hudsonius] 16 Pallid Harrier [Circus macrourus] 18 Papuan Harrier [Circus spilothorax] 7 Pied Harrier [Circus melanoleucos] 20 Réunion Harrier [Circus maillardi] 9 Spotted Harrier [Circus assimilis] 9 Swamp Harrier [Circus approximans] 7 Western Marsh Harrier [Circus aeruginosus] 4 1 Relevant Publications Balmer, D. et al. 2013. Bird Atlas 2001-11: The breeding and wintering birds of Britain and Ireland. BTO Books, Thetford. Beaman, M. -
Iucn Red Data List Information on Species Listed On, and Covered by Cms Appendices
UNEP/CMS/ScC-SC4/Doc.8/Rev.1/Annex 1 ANNEX 1 IUCN RED DATA LIST INFORMATION ON SPECIES LISTED ON, AND COVERED BY CMS APPENDICES Content General Information ................................................................................................................................................................................................................................ 2 Species in Appendix I ............................................................................................................................................................................................................................... 3 Mammalia ............................................................................................................................................................................................................................................ 4 Aves ...................................................................................................................................................................................................................................................... 7 Reptilia ............................................................................................................................................................................................................................................... 12 Pisces ................................................................................................................................................................................................................................................. -
DRIES ENGELEN - [email protected]
Accounting for differential migration strategies between age groups to monitor raptor population dynamics in the eastern Black Sea flyway (Vansteelant et al. In 2nd review IBIS) DRIES ENGELEN - [email protected] Photo: Adrien Brun One of the world’s largest bottlenecks for raptor migration Based on ‘Raptors of the World’ (Bildstein, 2000) Photo: Adrien Brun Targeted monitoring Priority species, secondary species Using morphological groups MonPalHen, Large Eagle, etc. Quantity vs quality Ageing (& sexing) Photo: John Wright Photo: Adrien Brun Estimated from unidentified Targeted monitoring individuals (%) Species Priority species, secondary species Avg SD Montagu’s Harrier 55,7 10,7 Pallid Harrier 50,5 11,1 Using morphological groups Western Marsh Harrier 0,2 0,1 MonPalHen, Large Eagle, etc. Black Kite 10,0 5,0 Barely mentioned (recorded?) in literature European Honey Buzzard 1,8 1,3 Booted Eagle 0,0 0,0 Quantity vs quality Short-toed Snake Eagle 0,0 0,0 Ageing (& sexing) Lesser Spotted Eagle 43,9 15,6 Photo: Adrien Brun Estimated from unidentified Targeted monitoring individuals (%) Species Priority species, secondary species Avg SD Montagu’s Harrier 55,7 10,7 Pallid Harrier 50,5 11,1 Using morphological groups Western Marsh Harrier 0,2 0,1 MonPalHen, Large Eagle, etc. Black Kite 10,0 5,0 European Honey Buzzard 1,8 1,3 Booted Eagle 0,0 0,0 Quantity vs quality Short-toed Snake Eagle 0,0 0,0 Ageing (& sexing) Lesser Spotted Eagle 43,9 Photo: John15,6 Wright Photo: Adrien Brun Age data is barely used in population trend analyses However 1) Inexperienced juveniles often behave differently than experienced conspecifics (timing, route choice, response to environmental change). -
Eared Owls in New Jersey
j RaptorRes. 23(4):162-166 ¸ 1989 The Raptor ResearchFoundation, Inc. OBSERVATIONS ON THE EVENING DEPARTURE AND ACTIVITY OF WINTERING SHORT-EARED OWLS IN NEW JERSEY THOMAS BOSAKOWSKI ABSTR^CT.--WinteringShort-eared Owls (Asioflammeus) were primarily crepuscularand nocturnal. Roostdeparture occurred most frequently after sunset(83%) with mostexceptions occurring on heavily overcastdays. Owls usually departed singly or in tandemand engaged in a steadydirect flight, presumably to a predeterminedhunting area. Hunting was rarely initiatednear the roostsite. Night observations up to 5 hr after sunsetrevealed that owls huntedcontinuously into the night and were not merely crepuscular.Despite their reputationas an on-the-wingpredator, extended periods of perch-huntingwere oftenobserved after sunset,particularly on windlessnights. Active hunting from percheswas evidenced by a continualseries of pouncesand huntingflights that werelaunched from the sameor nearbyperches. Owls respondedon 3 of 5 trials to broadcastsof prerecordedShort-eared Owl calls with vocalizations and/or vigorouscircling flights over the calling station. The Short-earedOwl (Asioflarnrneus)is primarily and Central North America, Peterson Field Guide Series nocturnalduring the winter months,and hencerel- Record,Houghton Mifflin Co., Boston)at known Short- eared Owl locations for at least 8 min. Taped calls were ativelyfew attemptshave been made to studyactivity broadcastat full volume with a portable 7 watt-output patternsand behaviorof the specieson wintering cassettetape-recorder placed on the roofof a parkedvehicle grounds(e.g., Short and Drew 1962; Clark 1975; with observers inside. Marr and McWhirter 1982). In this paper I present information on evening roost departure, social in- RESULTS AND DISCUSSION teractionsand hunting activitiesof wintering Short- Evening Departure. Short-eared Owls were eared Owls in New Jersey. -
Gender Determination in the Western Marsh Harrier (Circus Aeruginosus ) Using Morphometrics and Discriminant Analysis
J. Raptor Res. 40(1):000–000 E 2006 The Raptor Research Foundation, Inc. GENDER DETERMINATION IN THE WESTERN MARSH HARRIER (CIRCUS AERUGINOSUS ) USING MORPHOMETRICS AND DISCRIMINANT ANALYSIS CHRISTIAN BAVOUX Le Marais aux Oiseaux, Les Grissotie`res, 17550 Dolus-d’Ole´ron, France GUY BURNELEAU 2, rue du Port de Chiffeu, Mauzac, 17320 Saint-Just-Luzac, France VINCENT BRETAGNOLLE1 Centre d’Etudes Biologiques de Chize´, Centre National de la Recherche Scientifique, 79360 Beauvoir-sur-Niort, France ABSTRACT.—When adult, the gender of Western Marsh Harriers (Circus aeruginosus) are determined on the basis of the presence of gray feathers on the wing and on the tail in the males. However, males of this species in southwestern France have female-like plumages, lacking gray feathers, and thus, gender determination is impossible by using coloration alone. We investigated sex determination using biometric parameters in a study site located in southwestern France. From one to six measurements (body mass, bill length, wing chord length, tarsus length and width, and tail length) were taken from 243 marsh harriers of known gender (156 males and 87 females), marked in the study site, and subsequently re-sighted. Additionally, 30 marsh harriers specimens were measured by two observers to establish within and between observer repeatability values, as well as within bird repeatability for the six biometric parameters. Using quadratic Discriminant Analysis, we showed that it was possible to sex individuals of this species with .99% accuracy on the basis of only two parameters: bill length and body mass. Actually, using bill length alone provides very good indication of gender (accuracy . -
Identifying a Bird Species from the Temple of Hatshepsut at Deir El-Bahari
The secretarybird dilemma: identifying a bird species from the Temple of Hatshepsut at Deir el-Bahari Abstract: Known from a few representations in Predynastic Egyp- tian art, the secretarybird has otherwise been elusive, in the art of Pharaonic Egypt as well as the scientific discourse on icono- graphic imagery of birds in ancient Egypt. The author’s studies of the animal decoration at the Temple for her doctoral dissertation identified three images of birds belonging most likely to the same species, depicted in the context of the expedition of Hatshepsut shown in the Portico of Punt. The zoological identification of the species as the secretarybird (another possibility is the African harrier-hawk) derives from an in-depth analysis of the bird’s sys- tematics, appearance, distribution and habitat, as well as behavior, which are essential for proper species recognition and instrumen- tal for understanding the rationale behind bringing this particular bird from the “God’s Land”. Iconographic features contesting this identification and suggesting a different species, that is, the African harrier-hawk, are discussed based on a combination of theoretical background, material analysis, on-site interviews with experts and the author’s personal experience with the species. Keywords: African animals, birds in Ancient Egypt, secretarybird, African harrier-hawk, temple of Hatshepsut, Deir el-Bahari, Hat- shepsut Punt expedition, temple decoration A bird depicted in possibly three separate scenes from the Southern Middle Portico of the Temple of Hat- shepsut in Deir el-Bahari, documented in 2012 by the author as part of her extended study of animals in the decoration of this Eighteenth Dynasty sanctuary [Fig. -
Raptors at a Glance
Raptors at a Glance Accipiters Common Name Sharp-shinned Hawk Cooper's Hawk Northern Goshawk Scientific Name Accipiter striatus Accipiter cooperii Accipiter gentilis Former Common Name Woodlands, highly Woods, adapts well to aggressive toward human Nest Location / Type Woodlands urban areas; MF build encroachment; MF build Clutch Size / # Broods 4-5 / 1 brood 4-5 / 1 brood 3-4 / 1 brood Pair Bond Monogamous Monogamous Monogamous # Days Incubate 32-35; F 32-36; F>M 36-38; F>M # Days to Fledge 24-27 27-34 35-42 Chick Development Semialtricial 1 Semialtricial 1 Semialtricial 1 MF feed; male hunts from MF feed; male hunts from incubation to fledge, incubation to fledge; young female feeds young; young MF feed, young dependant dependant 30-40 days after dependant 30-40 days after Parental Care of Young 21-28 days after fledging fledging fledging Small birds, some Birds, mammals, grouse, Primary Food Small birds mammals squirrels, snowshoe hares Hunting Style Aerial pursuit Aerial pursuit Aerial pursuit, low patrol Range Map HY birds = up to 20% of Up to 25% of F breeds in breeding population; young HY, 25% of F breed in SY, hatch synchronously but 50% don't breed till TY; show distinct size irruptions occur on 10 year Notes difference between chicks. cycle (approx). Definitions: Chick Development Mating Systems Altricial : Immobile, downless, eyes closed, fed Monogamy : One male, one female Semialtricial 2 : Immobile, downy, eyes closed, fed Polygamy : Both polyandry and polygyny Semialtricial 1 : Immobile, downy, eyes open, fed Polyandry -
Black Harrier Research
Black Harrier Research Protecting a species through research and conservation Black Harriers and other Red Data species in the proposed Boulder Wind Farm: a re-assessment, January 2020 Dr R.E. Simmons Black Harrier Research Group, FitzPatrick Institute, UCT Dr R E Simmons, Honorary Researcher, Percy FitzPatrick Institute, University of Cape Town, Rondebosh, 7700, Cape Town, South Africa [email protected] +27 (0)82 780 0133 RATIONALE The proposed Boulders Wind Farm in the Cape Columbine area, east of Paternoster, has attracted public criticism from conservation groups in the area due to its proximity to various nationally important biodiversity areas, and visual and archaeological concerns. I was asked by the concerned groups, as a specialist on raptors, and particularly Endangered Black Harrier Circus maurus, to re-assess the Red Data species in the area and review the avian EIA Report prepared for the Boulders wind farm site. The Cape Columbine area has recently been identified as a nationally important core area for breeding harriers, so I spent three days on site in late January 2020 to prepare a specialist report as part of the Appeal Process. I also spoke to local birders and met with the conservationists. This is a report of my findings. BACKGROUND The proposed Boulders site is a Wind Farm comprising 45 turbines of hub height 120-m, placed on 10 farm portions surrounding the existing and operational West Coast 1 Wind Farm (WC1WF). The West Coast 1 site was subject to an avian assessment, mitigation measures, and has at least one year of carcass data available. -
Lighting Time
CAMERA acTION LIGHTING Bait fishing also has been recorded in other bird groups. A captive Lesser Black-backed Gull used bread to catch fish in a Durban bird park, and this has since been observed in wild strike Herring Gulls in Paris. Other birds recorded using bread to attract fish include Carrion African Harrier-Hawks Crows (Israel), Pied Kingfishers (Africa) and Black Kites (Australia), and a captive Sunbit- in Cape Town tern used mealworms to lure fish. Bait fishing appears to be a learned behav- iour. Proficiency improves with age; adult he African Harrier-Hawk Green-backed Herons use more baits than Polyboroides typus may have lures compared to juveniles, and are more changed its name from Gym- adept at catching fish. The behaviour may Tnogene but hasn’t changed its hunt- spread when birds observe other individuals ing antics. This sequence of images of baiting, but probably arises initially when an an immature bird literally scratching individual learns to associate fish with float- a House Sparrow out of a street light ing items. So-called ‘passive fishing’ provides was photographed by Neil Shannon a plausible intermediate step in this process. in Kenwyn, Cape Town. Several herons have been observed taking fish Having apparently taken a liking attracted to bread thrown into ponds to feed to Cape Town’s greenbelt of leafy TIME ducks or fish, and it is a small step from there suburbs and adjacent plantations to gathering their own bread to use as bait. and forests, Harrier-Hawks are now tool The rather skulking Little Bittern is unlikely fairly frequently seen as they feed Bait fishing by a Little Bittern to have learned this approach in such a setting, on introduced bird species such as this House Sparrow and on the alien he Green-backed Heron is renowned grey squirrels. -
Diet and Foraging Ecology of African Harrier Hawk (Polyboroides Typus) in Ehor Forest Reserve, Edo State, Nigeria
Journal of Researches in Agricultural Sciences Vol. 5 (2), 2017 Diet and Foraging Ecology of African Harrier Hawk (Polyboroides typus) in Ehor Forest Reserve, Edo State, Nigeria 1E.F. Okosodo, 2J.O. Orimaye, 1O. Aladelusi and 3O.O. Kolawole 1Department of Ecotourism and Wildlife Management, The Federal University of Technology, Akure, Ondo State 2Department of Forest Resources and Wildlife Management, Ekiti State University Ado-Ekiti, Ekiti State 3Department of Hospitality and Tourism, Federal Polytechnic, Ilaro Ogun State Email: [email protected] Abstract Feeding is an indispensable activity in the life of birds. It is crucial for their survival but the demands of food acquisition impose significant challenges to both the physiology and behavior of birds. Thus, this study on the feeding ecology of African harrier hawk is imperative for understanding the species adaptation to environments and also a crucial factor to be considered while examining their economic status. This research study investigated the diet and foraging ecology of the African harrier-hawk (Polyboroides typus) in Ehor Forest Reserve, Edo State, Nigeria. Direct field observation method was used to collect data for 12 months on the diet and foraging ecology of the bird species. The study area was divided into three compartments according to land use types, (mature forest, logged area, and farmlands). The results show that the African harrier-hawk consumed a variety of small animals, insects and fruits of some plant species. The frogs, lizards, adults, eggs of bird species and insects constituted 87.25% of the diets while plant resources made up 12.75%. The major diet resources were bird species belonging to the family Ploceidae and frogs; and the fruits of oil palm (Elaeis guineensis) and African pear (Dacryodes edulis).