Probing Prothrombin Structure by Limited Proteolysis Laura Acquasaliente, Leslie A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downregulation of the Clotting Cascade by the Protein C
Downregulation of the clotting cascade by the protein C F. Stavenuiter, E.A.M. Bouwens, L.O. Mosnier I Simposio Conjunto EHA - SAH Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA HEMATOLOGÍA, Vol.17 Número Extraordinario XXI CONGRESO E-mail: [email protected] Octubre 2013 Abstract APC mutants, which provide unique insights into The protein C pathway provides important biologi- the relative contributions of APC’s anticoagulant or cal activities to maintain the fluidity of the circula- cytoprotective activities to the beneficial effects of tion, prevent thrombosis, and protect the integrity APC in various murine injury and disease models. of the vasculature in response to injury. Activated Because of its multiple physiological and pharmaco- protein C (APC), in concert with its co-factors and logical activities, the anticoagulant and cytoprotec- cell receptors, assembles in specific macromolecular tive protein C pathway have important implications complexes to provide efficient proteolysis of multiple for the (patho)physiology of vascular disease and substrates that result in anticoagulant and cytopro- for translational research exploring novel therapeu- tective activities. Numerous studies on APC’s struc- tic strategies to combat complex medical disorders ture-function relation with its co-factors, cell recep- such as thrombosis, inflammation, ischemic stroke tors, and substrates provide valuable insights into the and neurodegenerative disease. molecular mechanisms and presumed assembly of Learning goals the macromolecular complexes that are responsible At the conclusion of this activity, participants should for APC’s activities. These insights allow for molecu- know that: lar engineering approaches specifically targeting the - the protein C pathway provides multiple im- interaction of APC with one of its substrates or co- portant functions to maintain a regulated bal- factors. -
The Potential Role of Recombinant Activated FVII in the Management of Critical Hemato-Oncological Bleeding: a Systematic Review
Bone Marrow Transplantation (2007) 39, 729–735 & 2007 Nature Publishing Group All rights reserved 0268-3369/07 $30.00 www.nature.com/bmt REVIEW The potential role of recombinant activated FVII in the management of critical hemato-oncological bleeding: a systematic review M Franchini1, D Veneri2 and G Lippi3 1Servizio di Immunoematologia e Trasfusione – Centro Emofilia, Azienda Ospedaliera di Verona, Verona, Italy; 2Dipartimento di Medicina Clinica e Sperimentale, Sezione di Ematologia, Universita` di Verona, Verona, Italy and 3Dipartimento di Scienze Biomediche e Morfologiche, Istituto di Chimica e Microscopia Clinica, Universita` di Verona, Verona, Italy Recombinant activated factor VII (rFVIIa) is an hemo- situations unresponsive to conventional therapy to control static agent that was originally developed for the excessive bleeding and reduce exposure to allogeneic blood. treatment of hemorrhage in patients with hemophilia and These include intracerebral hemorrhage, oral anticoagu- inhibitors.However, in the last few years rFVIIa has been lant-induced hemorrhage, thrombocytopenia, bleeding employed with success in a broad spectrum of congenital associated with hepatic failure, major surgery, trauma and acquired bleeding conditions.In this systematic review and life-threatening obstetrical, and gynecologic hemor- we present the current knowledge on the use of this drug in rhagic complications.5–9 patients suffering from hemato-oncological disorders, In this systematic review we have collected the available which are quite commonly complicated by severe hemor- data from the literature on the use of rFVIIa in hemato- rhage.On the whole, data in the literature suggest a oncological patients with severe bleeding, unresponsive to potential role for rFVIIa in the management of bleeding standard therapy. -
Recent Developments in the Understanding and Management of Paroxysmal Nocturnal Haemoglobinuria
review Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria Anita Hill, Stephen J. Richards and Peter Hillmen Department of Haematology, Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, UK Summary only one G6PD variant enzyme was present in the PNH red cells whereas both variants were present in the residual normal red Paroxysmal nocturnal haemoglobinuria (PNH) has been rec- cells, provided conclusive evidence of the clonal nature of PNH ognised as a discrete disease entity since 1882. Approximately a (Oni et al, 1970). It was clear by the 1980s that PNH cells were half of patients will eventually die as a result of having PNH. deficient in a large number of cell surface proteins, but it was Many of the symptoms of PNH, including recurrent abdominal unclear how this related to either the monoclonal nature of PNH pain, dysphagia, severe lethargy and erectile dysfunction, result or the haemolysis. The development of immortalised cell lines from intravascular haemolysis with absorption of nitric oxide with the PNH abnormality (both B- and T-cells lines) facilitated by free haemoglobin from the plasma. These symptoms, as well the rapid elucidation of the defect (Schubert et al, 1990; Hillmen as the occurrence of thrombosis and aplasia, significantly affect et al,1992;Nakakumaet al,1994).Itbecameclearthatavarietyof patients’ quality of life; thrombosis is the leading cause of proteins normally attached to the cell membrane by a glycolipid premature mortality. The syndrome of haemolytic-anaemia- structure, were found to be abnormal, and that this was due to a associated pulmonary hypertension has been further identified disruption in the glycosylphosphatidylinositol (GPI) biosyn- in PNH patients. -
Haematologica 1999;84:Supplement No. 4
Educational Session 1 Chairman: W.E. Fibbe Haematologica 1999; 84:(EHA-4 educational book):1-3 Biology of normal and neoplastic progenitor cells Emergence of the haematopoietic system in the human embryo and foetus MANUELA TAVIAN,* FERNANDO CORTÉS,* PIERRE CHARBORD,° MARIE-CLAUDE LABASTIE,* BRUNO PÉAULT* *Institut d’Embryologie Cellulaire et Moléculaire, CNRS UPR 9064, Nogent-sur-Marne; °Laboratoire d’Étude de l’Hé- matopoïèse, Etablissement de Transfusion Sanguine de Franche-Comté, Besançon, France he first haematopoietic cells are observed in es. In this setting, the recent identification in animal the third week of human development in the but also in human embryos of unique intraembryonic Textraembryonic yolk sac. Recent observations sites of haematopoietic stem cell emergence and pro- have indicated that intraembryonic haematopoiesis liferation could be of particular interest. occurs first at one month when numerous clustered We shall briefly review here the successive steps of CD34+ Lin– haematopoietic cells have been identi- human haematopoietic development, emphasising fied in the ventral aspect of the aorta and vitelline the recent progresses made in our understanding of artery. These emerging progenitors express tran- the origin and identity of human embryonic and fetal scription factors and growth factor receptors known stem cells. to be acting at the earliest stages of haematopoiesis, and display high proliferative potential in culture. Primary haematopoiesis in the human Converging results obtained in animal embryos sug- embryo and foetus gest that haematopoietic stem cells derived from the As is the case in other mammals, human haema- para-aortic mesoderm – in which presumptive endo- topoiesis starts outside the embryo, in the yolk sac, thelium and blood-forming activity could be detect- then proceeds transiently in the liver before getting ed as early as 3 weeks in the human embryo by dif- stabilised until adult life in the bone marrow. -
Understanding Megakaryopoiesis and Thrombopoiesis Using Human Stem Cells Models
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Understanding Megakaryopoiesis And Thrombopoiesis Using Human Stem Cells Models Xiu Li Sim University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Developmental Biology Commons Recommended Citation Sim, Xiu Li, "Understanding Megakaryopoiesis And Thrombopoiesis Using Human Stem Cells Models" (2017). Publicly Accessible Penn Dissertations. 2586. https://repository.upenn.edu/edissertations/2586 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2586 For more information, please contact [email protected]. Understanding Megakaryopoiesis And Thrombopoiesis Using Human Stem Cells Models Abstract Human stem cell models (CD34+ hematopoietic progenitors, embryonic stem cells and induced pluripotent stem cells (iPSCs)) are powerful tools for the study of megakaryopoiesis and thrombopoiesis, particularly in situations where mouse models are unavailable or do not accurately recapitulate human physiology or development. In the first part of this thesis, we identified and characterized novel megakaryocyte (MK) maturation stages in MK cultures derived from human stem cells. An immature, low granular (LG) MK pool (defined yb side scatter on flow cytometry) gives rise to a mature high granular (HG) pool, which then becomes damaged by apoptosis and GPIbα (CD42b) shedding. We define an undamaged HG/CD42b+ MK subpopulation, which endocytoses fluorescently-labeled coagulation factor V (FV) from the medium into alpha-granules and releases functional FV+CD42b+ platelet-like particles in vitro and when infused into immunodeficient mice. Importantly, these FV+ platelets have the same size distribution as infused human donor platelets and are preferentially incorporated into clots after laser injury. -
Insights Into Vitamin K-Dependent Carboxylation: Home Field Advantage Francis Ayombil 1 and Rodney M
Editorials 15. Iyer S, Uren RT, Dengler MA, et al. Robust autoactivation for apop - guide clinical decision making in acute myeloid leukemia: a pilot tosis by BAK but not BAX highlights BAK as an important therapeu - study. Leuk Res. 2018;64:34-41. tic target. Cell Death Dis. 2020;11(4):268. 18. Zelenetz AD, Salles G, Mason KD, et al. Venetoclax plus R- or G- 16. Matulis SM, Gupta VA, Neri P, et al. Functional profiling of veneto - CHOP in non-Hodgkin lymphoma: results from the CAVALLI phase clax sensitivity can predict clinical response in multiple myeloma. 1b trial. Blood. 2019;133(18):1964-1976. Leukemia. 2019;33(5):1291-1296. 19. Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the 17. Swords RT, Azzam D, Al-Ali H, et al. Ex-vivo sensitivity profiling to BCL2 family in B cell lymphoma. Front Oncol. 2019;8:636. Insights into vitamin K-dependent carboxylation: home field advantage Francis Ayombil 1 and Rodney M. Camire 1,2 1Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia and 2Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA E-mail: RODNEY M. CAMIRE - [email protected] doi:10.3324/haematol.2020.253690 itamin K-dependent (VKD) proteins play critical recognized that the propeptide sequence is critical for VKD roles in blood coagulation, bone metabolism, and protein carboxylation. 6 This insight led to the development Vother physiologic processes. These proteins under - of GGCX substrates that contained a propeptide sequence go a specific post-translational modification called and portions of the Gla domain which are superior when 7,8 gamma ( γ)-carboxylation which is critical to their biologic compared to FLEEL alone. -
Adhesive Receptor Mac-1 Coordinates the Activation of Factor X On
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 7462-7466, October 1988 Biochemistry Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: An alternative initiation of the coagulation protease cascade (leukocyte integrins/ADP/tissue factor/procoagulant response) DARIO C. ALTIERI, JAMES H. MORRISSEY, AND THOMAS S. EDGINGTON Vascular Biology Group, Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037 Communicated by Seymour Klebanoff, June 21, 1988 ABSTRACT Monocytes initiate coagulation through reg- ligand specificity for factor X (20) suggests that Mac-1 ulated surface expression of tissue factor and local assembly of exhibits the multifunctional receptor versatility typical of a proteolytic enzymatic complex formed by tissue factor and other, partially related, integrin receptors (21, 22). factor VIl/activated factor VII. We now show that, in the These observations have now been extended to demon- absence of these initiating molecules, monocytes and cell lines strate that, in the absence of demonstrable TF or TF: of monocytic/myeloid differentiation can alternatively initiate VII/VIa complex, ADP-stimulated monocytes and myeloid coagulation after exposure to ADP. The molecular basis for this cells bearing Mac-1 directly convert surface-bound factor X procoagulant response consists oftwo distinct events. First, cell to a proteolytically active derivative characteristic of factor stimulation with ADP induces high-affinity binding of coagu- Xa. This appears to represent an additional mechanism of lation factor X to the surface-adhesive receptor Mac-1. Locally, initiating the coagulation protease cascade on the surface of Mac-i-concentrated factor X is then rapidly proteolytically cells. -
Immunological Responses to Total Hip Arthroplasty
Journal of Functional Biomaterials Review Immunological Responses to Total Hip Arthroplasty Kenny Man 1, Lin-Hua Jiang 2 ID , Richard Foster 3 and Xuebin B Yang 1,4,* 1 Biomaterials and Tissue Engineering Group, School of Dentistry, University of Leeds, Leeds LS2 9JT, UK; [email protected] 2 School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; [email protected] 3 School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; [email protected] 4 Medical College and the First Affiliated Hospital, Henan University of Science and Technology, Henan 471023, China * Correspondence: [email protected]; Tel.: +44-113-3436162 Academic Editor: Wilson Wang Received: 6 April 2017; Accepted: 25 July 2017; Published: 1 August 2017 Abstract: The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15–25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. -
Regulation of the Innate Immune Response by the Blood Coagulation
REGULATION OF THE INNATE IMMUNE RESPONSE BY THE BLOOD COAGULATION CASCADE By Laura Day Healy A DISSERTATION Presented to the Department of Cell & Developmental Biology Of the Oregon Health & Science University School of Medicine In partial fulfillment of the requirements for the degree of Doctor of Philosophy In Cell & Developmental Biology June 2017 © Laura Healy All Rights Reserved School of Medicine Oregon Health & Science University ________________________________________________________________________ Certificate of Approval ______________________________________ This is to certify that the PhD Dissertation of Laura Healy “Regulation of the innate immune response by the blood coagulation cascade” Has been approved ______________________________________ Mentor: Owen J.T. McCarty, Ph.D. ______________________________________ Member/Chair: Eric D. Cambronne, Ph.D. ______________________________________ Member: Jeffrey A. Gold, M.D. ______________________________________ Member: Linda Susan Musil, Ph.D. ______________________________________ Member: Philip J.S. Stork, M.D. ______________________________________ Member: Abhinav Nellore, Ph.D. TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................ i List of Figures and Tables ......................................................................................................................... iv List of Abbreviations ................................................................................................................................ -
Interview Anouk Gentier in Medicines
Dutch Medicines Days Marysa van den Berg important in the functioning of the peptide.’ Patient material was being used to test the peptide. Gentier: ‘We get both healthy and diseased smooth muscle cells taken from pa- tients that underwent surgery for their lesions in the University Hospital of Maastricht. These cells are then cultured, put upon a plate, and incubated with a medium enriched by either calcium, phosphate or both. We then treat them with either protein S Gla, bound to an imaging agent, in various con- centrations or a negative control. Then we use a colorimetric assay to measure the num- ber of microcalcifications formed.’ Promising vesicles Not only is the protein S Gla domain capa- ble of detecting microcalcifications in the MAASTRICHT UNIVERSITY body. The peptide can also block the forma- Left: calcifying cells treated with protein S Gla peptide; right: control. tion of these ticking time bombs. ‘We see fewer microcalcifications in the treated cell cultures than in the negative control cultu- res’, says Gentier. ‘The exact mechanism of action is still unknown, but we think the A peptide against peptide binds to the phosphatidylserine resi- dues of the cell membrane of smooth mus- cle cells that are exposed to a calcifying en- vironment. Through this binding the cells atherosclerosis seem less prone to calcification.’ These findings may lead to a promising new treatment against atherosclerosis, hopes One of the leading causes of death worldwide is Gentier. She and her colleagues have ideas on how this could take shape. ‘We have yet atherosclerosis. PhD student Anouk Gentier to finalise this, but we are planning on ma- developed a peptide that can both trace and block king extracellular vesicles in which we intro- duce both protein S Gla and annexin A2. -
MONOCYTES CAN BE INDUCED by LIPOPOLYSACCHARIDE-TRIGGERED T LYMPHOCYTES to EXPRESS FUNCTIONAL FACTOR VII/Viia PROTEASE ACTIVITY B
MONOCYTES CAN BE INDUCED BY LIPOPOLYSACCHARIDE-TRIGGERED T LYMPHOCYTES TO EXPRESS FUNCTIONAL FACTOR VII/VIIa PROTEASE ACTIVITY BY BETTY P. TSAO, DARYL S. FAIR, LINDA K. CURTISS, AND THOMAS S. EDGINGTON Downloaded from http://rupress.org/jem/article-pdf/159/4/1042/1094234/1042.pdf by guest on 27 September 2021 From the Department of hnmunology, The Research Institute of Scripps Clinic, La Jolla, California 92037 The monocyte has been perceived as a relatively inactive member of the monocyte/macrophage series, i.e., a cell in transport to an anatomic site where differentiation to the macrophage will occur. Modification of this perception is merited in light of the ready capacity of monocytes, as well as their tissue- localized progeny, the elicited macrophage, to initiate and propagate coagulation protease pathways (reviewed in references 1-4). The human monocyte given appropriate direct collaboration by bacterial lipopolysaccharide (LPS), 1 immune complex-stimulated T lymphocytes (5-7), or a lymphokine (8, 9) from allogene- icaily or antigen-stimulated T cells (10, 1 1), produces and expresses on its surface a cell membrane lipoprotein, i.e., tissue factor, the initiating cofactor of the extrinsic coagulation protease pathway (12, 13). This initiating event is attribut- able to the calcium-dependent binding of Factor VII or VIIa to tissue factor (14, 15) to form a molecular complex capable of efficiently converting the zymogen Factor X to its active form by virtue of the limited proteolytic specificity of Factor VII and VIIa. This protease, the only coagulation protease that is proven to be active in the zymogen form (16), also can proteolytically activate Factor IX, of the intrinsic pathway (17). -
Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys
UC San Diego UC San Diego Previously Published Works Title Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys. Permalink https://escholarship.org/uc/item/0d21p5zb Journal Journal of molecular evolution, 81(3-4) ISSN 0022-2844 Author Doolittle, Russell F Publication Date 2015-10-05 DOI 10.1007/s00239-015-9701-0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys Russell F. Doolittle Journal of Molecular Evolution ISSN 0022-2844 Volume 81 Combined 3-4 J Mol Evol (2015) 81:121-130 DOI 10.1007/s00239-015-9701-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Mol Evol (2015) 81:121–130 DOI 10.1007/s00239-015-9701-0 ORIGINAL ARTICLE Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys Russell F.