Diversity and Biogeography of Ants in Mongolia (Hymenoptera: Formicidae)

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Biogeography of Ants in Mongolia (Hymenoptera: Formicidae) ASIAN MYRMECOLOGY Volume 6, 63–82, 2014 ISSN 1985-1944 © BADAMDORJ BAYARTOGTOKH , ULYKPAN AI B EK , SEIKI YAMANE AND MARTIN PFEIFFER Diversity and biogeography of ants in Mongolia (Hymenoptera: Formicidae) BADAMDORJ BAYARTOGTOKH 1, ULYKPAN AI B EK 2, SEIKI YAMANE 3 AND MARTIN PFEIFFER 2 1Department of Zoology, School of Biology and Biotechnology, National University of Mongolia, Ulaanbaatar 210646, Mongolia 2Department of Ecology, School of Biology and Biotechnology, National University of Mongolia, Ulaanbaatar 210646, Mongolia 3Graduate School of Science and Engineering, Kagoshima University, Kagoshima, 890-0065 Japan Corresponding author’s e-mail: [email protected] ABSTRACT. Information on the biogeographical composition and spatial distribution patterns of ant assemblages in Mongolia is relatively scarce. In this study we investigated species richness, spatial distribution and biogeographical composition of the Mongolian ant fauna and recorded a total of 71 species belonging to 17 genera and three subfamilies. Genus and species richness of ants is lower in Mongolia than in most surrounding geopolitical regions. Using published literature as well as our own data we examined how ant species richness was related to phytogeographical elements. The major part of the Mongolian ant fauna is associated with the mountain taiga and forest-steppe ecosystems. A few ant species belong to the arid steppe, semi-desert and desert ecosystems. We observed no significant correlation between species richness of ants and land area size of phytogeographical regions; however, species richness of ants and plants in various phytogeographical regions showed a significant positive correlation. We did not detect strong differentiation of ant species along the elevational gradients of the country as most of the species were recorded in a wide range of elevations, but mid-elevational altitudes (1000 – 2000 m a.s.l.) showed the greatest diversity of ants. Regarding the biogeographical composition, species with wide geographical distributions, i.e. Transpalaearctic species together with Eastern Palaearctic, Central and East Asian elements, comprise a large proportion of the ant fauna in Mongolia. The ant fauna of Mongolia does not differ significantly from that of neighbouring regions, and the majority of species occurring in this country probably originated in neighbouring areas to the west, north and east. Keywords: Formicidae, area size, biogeography, distribution, diversity, elevation, Mongolia INTRODUCTION Mocsáry & Szépligeti (1901) and Ruzsky (1903, 1915) published the pioneer works on Ants are common, almost ubiquitous insects in the Mongolian ants, based on material from Mongolia, and they can be found in all ecosystems the southern Gobi and northern forested areas. and main terrestrial habitats. However, the ant However, the exact locality of some historical fauna of Mongolia is still incompletely known. records from southern and northern Mongolia is 5 - AM 6 - Diversity and biogeography of ants in Mongolia.indd 63 22-May-14 11:27:20 AM 64 Badamdorj Bayartogtokh, Ulykpan Aibek, Seiki Yamane and Martin Pfeiffer unclear, because these places are now in China genera, with new records of six species. They or Russia, and difficult to access. For instance, excluded several species from the checklist due to Holgersen (1943) recorded Myrmica rubra improbable occurrence or incorrect identification. (Linnaeus, 1758) from the place named as Sajan, Subsequently, Yamane & Aibek (2007) published Sistikem, but Wetterer & Radchenko (2011) a short note on ants of Mongolia that included all revealed that the actual name of this place is species also included in Pfeiffer et al. (2007). Systyg Khem of the Sayan Mountains (in Siberia), Later studies focused on certain which is located in the Russian Republic of Tuva. systematic groups, rather than on documentation Another example is Stitz (1934), who reported of overall faunal diversity. Thus, Aibek & five species, namely Formica clara Forel, Yamane (2009) reviewed the genus Camponotus 1886, F. picea Nylander, 1846, Lasius alienus in Mongolia, and recorded five species along with (Foerster 1850), Tapinoma geei Wheeler, 1927 a new finding of two species,C. aterrimus Emery, and T. orthocephalum Stitz, 1934 from south and 1895 and C. (Tanaemyrmex) tashcumiri Tarbinsky, southwestern Mongolia, without giving exact 1976. Subsequently, these authors studied the names of the collection localities. Two of the subgenera Austrolasius and Dendrolasius of the above-mentioned species, T. geei and L. alienus, genus Lasius in Mongolia (Aibek & Yamane have not yet been confirmed in Mongolia. It is 2010), and reported nine species of Lasius, two possible that the collection sites are located in of which, namely L. (Austrolasius) reginae Faber, Inner Mongolia, China. 1967 and L. (Dendrolasius) fuji Radchenko, Actual research on ants in Mongolia is 2005, were new records for the Mongolian fauna. considered to have commenced in the mid 1960s Lasius obscuratus Stitz, 1930, which had been with Dlussky (Dlussky 1965). Later, Pisarski excluded from the Mongolian fauna by Pfeiffer (1969a, b), Dlussky & Pisarski (1970), Pisarski et al. (2007), who doubted the occurrence of this & Krzysztofiak (1981) and Radchenko (1994a) species in Mongolia, was again listed by Aibek & published extensive works and recorded more Yamane (2010). However, the nominal subgenus than 50 species for the country. However, this Lasius has not been seriously revised, leaving number required some amending to reflect the many problems. taxonomic status and actual occurrence of some More recently, Yamane & Aibek (2012) species in Mongolia. Therefore, Radchenko studied the distributional patterns of 14 species (1994a, b, 1995, 1997, 2005) and Seifert (2000, of the genus Myrmica in Mongolia, and provided 2002, 2004) provided additional information on an identification key for all those species. the ants of Mongolia, and were concerned with the They omitted Myrmica commarginata Ruzsky, taxonomic resolution of the species. Pfeiffer et al. 1905 from the species list, but newly added M. (2003) completed the first comprehensive study lobicornis Nylander, 1846. on ant communities in Mongolia examining the A significant focus for present-day distribution patterns of ants along an ecological myrmecologists is the assessment of biodiversity, gradient from steppe to desert, assessing the community composition, biogeography, and other impact of climatic parameters and the influence basic investigations of the ecology of a regional of vegetation on community structure and species ant biota. Such a study would grant researchers diversity of ants. Later, Aibek et al. (2006) a background from which to begin further reported 17 species from Mt Bogdkhan in north- more detailed studies. The research presented central Mongolia along with information on here examines the ant fauna of Mongolia in a nesting habits of each species. They reviewed the biogeographical and ecological context. For the ant species list recorded in this mountain area, moment we simply attempt to combine what is and made comments on status and earlier records already known with our unpublished data in order of some of those species. to contribute to a better understanding of the Summarising the literature sources as diversity and biogeography of ants in Mongolia. well as their unpublished records, a checklist of Hopefully, this work will also help to conserve ants in Mongolia was published by Pfeiffer et the interesting ant fauna of Mongolia. al. (2007), which reported 68 species from 17 5 - AM 6 - Diversity and biogeography of ants in Mongolia.indd 64 22-May-14 11:27:20 AM Diversity and biogeography of ants in Mongolia (Hymenoptera: Formicidae) 65 Fig. 1. Phytogeographical regions of Mongolia (modified after Yunatov 1950). Refer to “Study area” subsection for numbering of these regions. White dots represent major cities, black dots the sampling points of our study. Dark green represents mountain taiga forest, light green – forest steppe, yellowish green – steppe, yellow – semi- desert, tawny – desert ecosystems. & Dagvadorj 2010). The highest precipitation MATERIALS AND METHODS values do not exceed 600 mm in the northern mountains, whereas southern desert areas receive Study area roughly 50 mm of precipitation. From the north to the south of the country, mean annual precipitation Mongolia stretches across central and north- decreases steadily, which is a decisive factor for east Asia, and occupies several vegetation zones the distribution of vegetation formations. From where the Siberian taiga forest meets the Central north to south it not only gets drier, but warmer Asian steppe and desert. The north-south axis as well. From the west to the east some areas measures more than 1,200 km at its maximum, show comparatively low precipitation because and the widest east-west distance reaches about they are on the lee side of mountain chains. Such 2,370 km. Mongolia is an upland country, with an a rain shadow effect is most pronounced in the average elevation of 1,580 m (range of elevation: depressions of larger lakes in western Mongolia, 560 – 4374 m), and about 85% of its area elevated but it is recognisable in central and eastern over 1,000 m a.s.l. (Murzaev 1952). Mongolia (Hilbig 1995). This complex set of Mongolia has an extreme continental parameters, together with the large area of the climate, and temperature fluctuates greatly, both country, creates a large variety of habitats and daily and annually.
Recommended publications
  • Radiation in Socially Parasitic Formicoxenine Ants
    RADIATION IN SOCIALLY PARASITIC FORMICOXENINE ANTS DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (D R. R ER . N AT .) DER NATURWISSENSCHAFTLICHEN FAKULTÄT III – BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Jeanette Beibl aus Landshut 04/2007 General Introduction II Promotionsgesuch eingereicht am: 19.04.2007 Die Arbeit wurde angeleitet von: Prof. Dr. J. Heinze Prüfungsausschuss: Vorsitzender: Prof. Dr. S. Schneuwly 1. Prüfer: Prof. Dr. J. Heinze 2. Prüfer: Prof. Dr. S. Foitzik 3. Prüfer: Prof. Dr. P. Poschlod General Introduction I TABLE OF CONTENTS GENERAL INTRODUCTION 1 CHAPTER 1: Six origins of slavery in formicoxenine ants 13 Introduction 15 Material and Methods 17 Results 20 Discussion 23 CHAPTER 2: Phylogeny and phylogeography of the Mediterranean species of the parasitic ant genus Chalepoxenus and its Temnothorax hosts 27 Introduction 29 Material and Methods 31 Results 36 Discussion 43 CHAPTER 3: Phylogenetic analyses of the parasitic ant genus Myrmoxenus 46 Introduction 48 Material and Methods 50 Results 54 Discussion 59 CHAPTER 4: Cuticular profiles and mating preference in a slave-making ant 61 Introduction 63 Material and Methods 65 Results 69 Discussion 75 CHAPTER 5: Influence of the slaves on the cuticular profile of the slave-making ant Chalepoxenus muellerianus and vice versa 78 Introduction 80 Material and Methods 82 Results 86 Discussion 89 GENERAL DISCUSSION 91 SUMMARY 99 ZUSAMMENFASSUNG 101 REFERENCES 103 APPENDIX 119 DANKSAGUNG 120 General Introduction 1 GENERAL INTRODUCTION Parasitism is an extremely successful mode of life and is considered to be one of the most potent forces in evolution. As many degrees of symbiosis, a phenomenon in which two unrelated organisms coexist over a prolonged period of time while depending on each other, occur, it is not easy to unequivocally define parasitism (Cheng, 1991).
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • No Impact on Queen Turnover, Inbreeding, and Population Genetic Differentiation in the Ant Formica Selysi
    Evolution, 58(5), 2004, pp. 1064±1072 VARIABLE QUEEN NUMBER IN ANT COLONIES: NO IMPACT ON QUEEN TURNOVER, INBREEDING, AND POPULATION GENETIC DIFFERENTIATION IN THE ANT FORMICA SELYSI MICHEL CHAPUISAT,1 SAMUEL BOCHERENS, AND HERVEÂ ROSSET Department of Ecology and Evolution, Biology Building, University of Lausanne, 1015 Lausanne, Switzerland 1E-mail: [email protected] Abstract. Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected con¯ict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene ¯ow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a ®ve-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but signi®cant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males.
    [Show full text]
  • Encyclopedia of Social Insects
    G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated.
    [Show full text]
  • Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships
    Irish Ants (Hymenoptera, Formicidae): Distribution, Conservation and Functional Relationships Submitted by: Dipl. Biol. Robin Niechoj Supervisor: Prof. John Breen Submitted in accordance with the academic requirements for the Degree of Doctor of Philosophy to the Department of Life Sciences, Faculty of Science and Engineering, University of Limerick Limerick, April 2011 Declaration I hereby declare that I am the sole author of this thesis and that it has not been submitted for any other academic award. References and acknowledgements have been made, where necessary, to the work of others. Signature: Date: Robin Niechoj Department of Life Sciences Faculty of Science and Engineering University of Limerick ii Acknowledgements/Danksagung I wish to thank: Dr. John Breen for his supervision, encouragement and patience throughout the past 5 years. His infectious positive attitude towards both work and life was and always will be appreciated. Dr. Kenneth Byrne and Dr. Mogens Nielsen for accepting to examine this thesis, all the CréBeo team for advice, corrections of the report and Dr. Olaf Schmidt (also) for verification of the earthworm identification, Dr. Siobhán Jordan and her team for elemental analyses, Maria Long and Emma Glanville (NPWS) for advice, Catherine Elder for all her support, including fieldwork and proof reading, Dr. Patricia O’Flaherty and John O’Donovan for help with the proof reading, Robert Hutchinson for his help with the freeze-drying, and last but not least all the staff and postgraduate students of the Department of Life Sciences for their contribution to my work. Ich möchte mich bedanken bei: Katrin Wagner für ihre Hilfe im Labor, sowie ihre Worte der Motivation.
    [Show full text]
  • Hymenoptera: Formicidae)
    THE ORIGIN OF WORKERLESS PARASITES IN LEPTOTHORAX (S.STR.) (HYMENOPTERA: FORMICIDAE) BY JORGEN HEINZE Theodor-Boveri-Institut (Biozentrum der Universitit), LS Verhaltensphysiologie und Soziobiologie, Am Hubland, D-97074 Wtirzburg, F.R.G. ABSTRACT The evolutionary origin of workerless parasitic ants parasitizing colonies of Leptothorax (s.str.) is investigated using data on mor- phology, chromosome number, and allozyme phenotype of both social parasites and their hosts. Of the three previously proposed pathways, the evolution of workerless parasites from guest ants or slave-makers is unlikely, at least according to a phenogram obtained by UPGMA clustering of Nei's similarities based on seven enzymes. Intraspecific evolution of the workerless parasites Doronomyrmex goesswaldi, D. kutteri, and D. pacis from their common host, Leptothorax acervorum cannot be excluded with the present data. The workerless parasite L. paraxenus, however, clearly differs from its host, L. cf. canadensis, in morphology and biochemistry, and most probably did not evolve from the latter species. It is proposed to synonymize Doronomyrmex under Lep- tothorax (s.str.). INTRODUCTION Eusocial insects by definition are characterized by a division of labor between non-reproductive workers and reproductive queens. Nevertheless, in a small minority of ant, bee, and wasp species, the worker caste has been secondarily lost. Instead of founding their own colonies solitarily, the queens of these workerless social para- sites invade the nests of other, often closely related host species and exploit the present worker force to rear their own young. In 1present address: Zool. Inst. I, Univ. Erlangen-Ntirnberg, Staudtstrasse 5, D-91058 Erlangen, Germany Manuscript received 19 January 1996.
    [Show full text]
  • Cuticular Hydrocarbon Profiles in the Slave-Making
    sympatrically in parts of Europe [13]. thank Nitto Electric Co. for providing 5. Dyer, L. J., et al.: Can. Ent. 114, 891 Although the sex pheromone of the for- the synthetic S-enantiomer. (1982) mer was estimated to be 100% (+)- 6. Schneider, D.: Naturwissenschaften 79, 241 (1992) dispalure, the gypsy moth possesses cells Received Novemer 11, 1992 and February 7. Inouchi, J., et al.: Int. J. Insect Mor- 8, 1993 specialized to (+)- and (-)-dispalure (a phol. Embryol 16, 177 (1982) pheromone inhibitor), whereas in the 8. Meinecke, C.-C.: Zoomorphologie 82, nun moth, which was estimated to uti- 1 (1975) lize 90% (-)-, and 10% (+)-dispalure, 9. Kafka, W. A., et al. : J. Comp. Physiol. both cells responded to (+)-dispalure 1. Bestmann, H. J., Vostrowsky, O.: CRC 87, 277 (1973) and no (-)-dispalure-sensitive cell was Handbook of Natural Pesticides, Vol. 10. Leal, W. S., et al.: J. Chem. Ecol. (in found. 4A. Boca Raton: CRC Press 1988 press) 2. Tumlinson, J. H., et al.: Science 197, 11. Fukusaki, E., et al.: Biosci. Biotech. We are grateful to K. Asaoka, Dr. A. 789 (1977) Biochem. 56, 1160 (1992) Sen, and Dr. J. Inouchi for advice 3. Leal, W. S., et al.: Naturwissenschaften 12. Okada, K., et al. : J. Insect Physiol. 38, regarding the preparations of samples 78, 521 (1991) 705 (1992) for SEM and TEM as well as for their 4. Cuperus, R L.: Int. J. Insect Morphol. 13. Hansen, K., et al.: Naturwissenschaf- critical review of the manuscript. We Embryol. 14, 347 (1985) ten 70, 466 (1983) Naturwissenschaften 80, 281-285 (1993) © Springer-Verlag 1993 suggested that slave-makers chemically mark their slaves to prevent them from returning to their own colonies [9].
    [Show full text]
  • Of Hungary: Survey of Ant Species with an Annotated Synonymic Inventory
    insects Article The Myrmecofauna (Hymenoptera: Formicidae) of Hungary: Survey of Ant Species with an Annotated Synonymic Inventory Sándor Cs˝osz 1,2, Ferenc Báthori 2,László Gallé 3,Gábor L˝orinczi 4, István Maák 4,5, András Tartally 6,* , Éva Kovács 7, Anna Ágnes Somogyi 6 and Bálint Markó 8,9 1 MTA-ELTE-MTM Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; [email protected] 2 Evolutionary Ecology Research Group, Centre for Ecological Research, Institute of Ecology and Botany, 2163 Vácrátót, Hungary; [email protected] 3 Department of Ecology and Natural History Collection, University of Szeged, Szeged Boldogasszony sgt. 17., 6722 Szeged, Hungary; [email protected] 4 Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; [email protected] (G.L.); [email protected] (I.M.) 5 Museum and Institute of Zoology, Polish Academy of Sciences, ul. Wilcza 64, 00-679 Warsaw, Poland 6 Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; [email protected] 7 Kiskunság National Park Directorate, Liszt F. u. 19, 6000 Kecskemét, Hungary; [email protected] 8 Hungarian Department of Biology and Ecology, Babe¸s-BolyaiUniversity, Clinicilor 5-7, 400006 Cluj-Napoca, Romania; [email protected] 9 Centre for Systems Biology, Biodiversity and Bioresources, Babes, -Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania * Correspondence: [email protected]; Tel.: +36-52-512-900 (ext. 62349) Simple Summary: Abundance is a hallmark of ants (Hymenoptera: Formicidae). They are exceed- ingly common in both natural and artificial environments and they constitute a conspicuous part Citation: Cs˝osz,S.; Báthori, F.; Gallé, of the terrestrial ecosystem; every 3 to 4 out of 10 kg of insects are given by ants.
    [Show full text]
  • The Evolution of Social Parasitism in Formica Ants Revealed by a Global Phylogeny
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423324; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The evolution of social parasitism in Formica ants revealed by a global phylogeny Marek L. Borowiec*a,b,c, Stefan P. Coverd, and Christian Rabeling†a aSchool of Life Sciences, Arizona State University, Tempe, AZ 85287, U.S.A. bInstitute of Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, U.S.A. cDepartment of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, U.S.A. dMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A. Abstract Studying the behavioral and life history transitions from a cooperative, eusocial life history to exploita­ tive social parasitism allows for deciphering the conditions under which changes in behavior and social organization lead to diversification. The Holarctic ant genus Formica is ideally suited for studying the evo­ lution of social parasitism because half of its 176 species are confirmed or suspected social parasites, which includes all three major classes of social parasitism known in ants. However, the life­history transitions associated with the evolution of social parasitism in this genus are largely unexplored. To test compet­ ing hypotheses regarding the origins and evolution of social parasitism, we reconstructed the first global phylogeny of Formica ants and representative formicine outgroups.
    [Show full text]
  • The Alcon Blue Butterfly and Its Specific Parasitoid in The
    insects Article A Unique Population in a Unique Area: The Alcon Blue Butterfly and Its Specific Parasitoid in the Białowie˙zaForest Izabela Dzieka ´nska 1,* , Piotr Nowicki 2 , Ewa Piro˙znikow 3 and Marcin Sielezniew 4 1 Division of Molecular Biology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Białystok, Poland 2 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; [email protected] 3 Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45 E, 15-351 Białystok, Poland; [email protected] 4 Laboratory of Insect Evolutionary Biology and Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; [email protected] * Correspondence: [email protected] Received: 31 August 2020; Accepted: 8 October 2020; Published: 12 October 2020 Simple Summary: Caterpillars of the Alcon blue butterfly Phengaris alcon feed initially inside flowerheads of Gentiana plants but complete their development as ‘cuckoos’ in nests of Myrmica ants being fed by workers. Social parasitism protects larvae from most natural enemies and only specialized ichneumon wasps are able to infiltrate host colonies and parasitize them. Across its range P. alcon forms different ecotypes adapted to specific ants and plants. Complicated ecological requirements make the butterfly a very local and threatened species and sensitive to environmental changes. We investigated an isolated and previously unknown population in the high nature value area, i.e., the Białowie˙za Forest (NE Poland). Using the marking technique we estimated the seasonal number of adults at 1460 individuals and the density (850/ha) showed to be the highest among all hygrophilous populations studied so far.
    [Show full text]
  • "An Overview of the Species and Ecological Diversity of Ants"
    An Overview of the Advanced article Species and Ecological Article Contents . Introduction Diversity of Ants . Origin and Diversification of Ants Through Time . Taxonomic Diversity . Biogeography and Diversity Patterns of Ants Benoit Gue´nard, Biodiversity and biocomplexity Unit, Okinawa Institute of Science and . Ecological Diversity of Ants Technology, Onna-son, Okinawa, Japan . Conclusion Online posting date: 15th May 2013 Since their appearance during the Cretaceous, ants have approximately 12 500 species of ants, all eusocial, have diversified to become today the most diverse group of been described and hundreds of new species are described social insects and one of the most influential groups of each year. Ant biologists estimate that the Formicidae organisms on the planet. More than 12 500 species of ants family could include no less than 20 000 species (Ho¨lldobler and Wilson, 1990). In comparison, there are ‘only’ are presently described, distributed within 21 sub- approximately 3000 termite species (Engel et al., 2009), families, with a large majority of the species belonging to 2000 species of social bees (8% of the total bees) and 1100 only four subfamilies. Ants are present in almost all ter- social wasp species (James Carpenter, personal communi- restrial ecosystems, their peak of diversity is found within cation) known. See also: Ecology and Social Organisation the tropical regions, and ant richness tends to decline of Bees both with increasing latitude and altitude. In most eco- In the first part of this article the diversity of ants from systems the ecological importance of ants, involved in geologic times to the present is reviewed, focusing on four numerous interactions with organisms ranging from taxonomically dominant groups and their spatial distri- bacteria, plants, fungi, arthropods to vertebrates, plays a bution.
    [Show full text]
  • First Record of the Permanent Social Parasitic, Slavemaking Ant Harpagoxenus Sublaevis (NYLANDER, 1852) for Belgium (Hymenoptera, Formicidae)
    ~ Bulletin S.R.B.E.IK.B.V.E., 142 (2006): 21-24 First record of the permanent social parasitic, slavemaking ant Harpagoxenus sublaevis (NYLANDER, 1852) for Belgium (Hymenoptera, Formicidae) Peter BOER 1 & Wouter DEKONINC~ 1 Gemene Bos 12, 1861 HG Bergen, The Netherlands (e-mail: [email protected]). 2 Royal Belgian Institute of Natural Sciences, Department Entomology, Vautierstraat 29, B-1000 Brussels, Belgium. Abstract We report the first record of the permanent parasitic ant Harpagoxenus sublaevis (NYLANDER, 1852) in Belgium. A nest of the species was discovered on 3.V.2006 in Nahtsief in the Hautes Fagnes. In the nest workers of its frequently used host Leptothorax acervorum (F ABRICJUS, 1793) were found. This paper presents the locality, coexisting ant fauna and possibilities where to rediscover this species. Keywords: first record, Belgium, Harpagoxenus sublaevis, faunistic. Resume Nous signalons la premiere capture d 'Harpagoxenus sublaevis (NYLANDER, 1852) une fo urmi esclavagisteobligatoire en Belgique. Un nid de cette espece a ete trouve le 3.V.2006 a Nahtsiefdans les Hautes Fagnes, dans lequel se trouvaient egalement des ouvrieres de Leptothorax acervorum (FABRICIUS, 1793), une des especes cibles d'Harpagoxenus sublaevis. Ici on commente la localite, les differentes fourmis avoisinantes et les possibilites de retrouver 1'es pece en Belgique. Samenvatting We melden hier de eerste waam eming van de permanent, parasitaire slavenjaagster Ha1pagoxenus sublaevis (NYLANDER, 1852), de nijptangmier in Belgie. Een nest van deze soort werd ontdekt op 3.V.2006 in Nahtsief in de Hoge Venen. In het nest werden ook werksters van de vaak door deze soort gebruikte gastheer Leptothorax acervorum (FABRJCJUS, 1793) gevonden.
    [Show full text]