Linear Extension, Skeletal Density, and Calcification Rates of the Blue

Total Page:16

File Type:pdf, Size:1020Kb

Linear Extension, Skeletal Density, and Calcification Rates of the Blue Coral Reefs https://doi.org/10.1007/s00338-021-02137-3 NOTE Linear extension, skeletal density, and calcification rates of the blue coral Heliopora coerulea 1 2 2 Travis A. Courtney • James R. Guest • Alasdair J. Edwards • Romeo M. Dizon3 Received: 25 January 2021 / Accepted: 10 June 2021 Ó The Author(s) 2021 Abstract The brooding reef-building octocoral Heliopora Keywords Extension Á Skeletal density Á Calcification is widespread on Indo-West Pacific reefs and appears to be rate Á Blue coral Á Octocoral Á Ocean warming Á Ocean relatively resistant to thermal stress, which may enable it to acidification Á Coral reef restoration persist locally while scleractinians diminish under Anthropocene conditions. However, basic physiological measurements of ‘‘blue corals’’ are lacking and prevent Introduction their inclusion in trait-based studies. We address this by quantifying rates (mean ± SE) of linear extension Calcium carbonate production represents one of the core (0.86 ± 0.05 cm yr-1) and skeletal density functions of coral reef ecosystems (Brandl et al. 2019) and (2.01 ± 0.06 g cm-3) to estimate calcification rates can be approximated from estimates of benthic cover and (0.87 ± 0.08 g cm-2 yr-1) for the small branch- taxa-specific calcification rates as part of census-based ing/columnar morphology of Heliopora coerulea.We coral reef carbonate production budgets (Perry et al. 2012). postulate that H. coerulea may become an increasingly While notable efforts have advanced estimates of carbonate important reef-builder under ocean warming due to its production states through the aggregation of publicly relative resistance to thermal stress and high skeletal den- accessible coral linear extension, skeletal density, and sity that make colonies less vulnerable to storm damage calcification rate data (e.g., Perry et al. 2012; Madin et al. under ocean acidification. Moreover, Heliopora corals are 2016), basic physiology measurements of the reef-building likely dispersal limited suggesting they may be an under- octocoral genus Heliopora are largely absent from these appreciated genus for restoration of stress-tolerant reef- databases. To the best of our knowledge, these are limited building capacity on degraded reefs. to rates of lateral overgrowth of 2.1 ± 0.9 cm yr-1 for H. coerulea over Porites spp. corals reported by Guzman et al. (2019) and a solitary H. coerulea calcification rate estimate of 0.48 g cm-2 yr-1 (by Planck et al. 1988 in Ryan et al. 2019) in the scientific literature. Widely distributed across the Indo-Pacific, Heliopora & Travis A. Courtney corals are distinct in that they represent the only known [email protected] genus of hermatypic octocorals (Zann and Bolton 1985). & James R. Guest Often termed ‘‘blue corals’’ owing to the incorporation of [email protected] iron salts into their skeletal aragonite, Heliopora are gen- 1 Scripps Institution of Oceanography, University of erally typified by their iconic blue skeletons (Hill 1960; California, La Jolla, San Diego, CA, USA Richards et al. 2018). Heliopora coerulea was considered 2 School of Natural and Environmental Sciences, Newcastle the only extant species, but recent genetic evidence has University, Newcastle upon Tyne, UK suggested cryptic speciation within H. coerulea between 3 Department of Biology, University of the Philippines Baguio, small and flat branching morphologies (Yasuda et al. 2014) Baguio City, Philippines that have asynchronous reproductive timing (Villanueva 123 Coral Reefs 2016). Heliopora hiberniana was also recently described in fragments represented the small branching/columnar mor- north Western Australia (Richards et al. 2018). Interest- phology sensu Yasuda et al. (2014) and Villanueva (2016) ingly, Heliopora appears to have higher optimal tempera- (Fig. 1a). Fragments were sourced from 25 independent ture ranges compared to many scleractinian corals as colonies (four fragments per colony) and epoxied (Pioneer evidenced by apparent range retractions during periods of Epoxyclay AquaTM) onto replicate calcium carbonate cooling (Zann and Bolton 1985), high degree of bleaching substrates (locally aquacultured Tridacna gigas shells) resistance and resilience during recent thermal stress events mounted on plastic mesh frames between mid-December (Kayanne et al. 2002; Donner et al. 2010; Phongsuwan and 2005 and mid-January 2006 in five replicate plots at Changsang 2012; Harii et al. 2014; Richards et al. 2018; 2.9–3.4 m depth within the lagoon north of Silaqui Island, Guzman et al. 2019; Ryan et al. 2019), apparent increasing Philippines (16°26022.000N 119°56037.800E). All linear competitive advantage in warmer waters (Atrigenio et al. extension data presented here were collected as part of a 2020), and growth rates that increase with seawater tem- larger experiment to examine coral growth and survival peratures up to at least 31 °C (Guzman et al. 2019). H. rates (e.g., see Guest et al. (2011) for further details on coerulea also contributed to the maintenance of positive study design and photographs of outplanted corals). Linear coral reef carbonate production states following a coral extension was determined from repeated caliper (preci- bleaching event (Ryan et al. 2019), providing further evi- sion = 0.1 mm) measurements of fragment height on six dence that H. coerulea may become increasingly important occasions in February, May, and October 2006, April and reef-builders under ongoing ocean warming. September 2007, and finally in May 2008. Over the * Owing to the absence of basic physiology data for He- 2.25 years of the study, none of the 100 fragments suf- liopora corals, it remains unclear how the increasing rel- fered mortality, but two were either broken or became ative abundance of Heliopora corals may impact coral reef unattached, so only prior growth was recorded. Linear geo-ecological functions under ongoing ocean warming extension (cm yr-1) was estimated from the least squares and acidification. In this study, we quantify linear exten- regression line slope of height (cm) vs. time (yr) from each sion and skeletal density to estimate morphology-specific survey for each fragment to make use of the six repeated calcification rates to fill these gaps in the trait-based coral height measurements for each fragment and minimize literature and speculate as to the role of Heliopora coerulea effects of individual measurement error. as an emerging reef-builder and potential restoration target in the Anthropocene. Skeletal density In the absence of direct, contemporaneous skeletal density Methods measurements on the outplanted Heliopora coerulea frag- ments, we used three specimens collected from the Fed- Linear extension erated States of Micronesia in 1967 and preserved in the Scripps Institution of Oceanography Benthic Invertebrate Large and small Heliopora coerulea fragments (n = 100) Collection (i.e., SIO-BIC Co151, Co276, Co277) (Fig. 1b) of mean ( ± SE) initial planar area of 22.3 ± 1.5 cm2 to quantify H. coerulea skeletal density and estimate cal- (n = 50 large fragments) and 5.2 ± 0.2 cm2 (n = 50 small cification rates. Archimedes’ principle was used to deter- fragments) were used to estimate linear extension rates mine bulk skeletal densities (g cm-3) from the mass of from repeated measures of height through time. All skeletal material (g) divided by the volume of water dis- placed (cm3) (Jokiel et al. 1978; Morgan and Kench 2012). The mass of each skeletal fragment was determined via direct measurement of the dry skeleton. The volume of displaced water for each respective skeletal fragment (cm3) was determined via the seawater equation of state (i.e., R package seacarb; Gattuso et al. 2020) using the mass (g), temperature (°C), and salinity (ppt) of the displaced water upon submergence of the skeleton in deionized water. We assumed that H. coerulea skeletal voids were small and Fig. 1 a Heliopora coerulea from Bolinao, Philippines showing the poorly connected with minimal influence on bulk skeletal typical light brown coloration of living colonies. Photograph by JR density measurements and therefore did not dip the speci- Guest. b Heliopora coerulea skeletal specimen from the Scripps Institution of Oceanography Benthic Invertebrate Collections (SIO- mens in paraffin wax prior to displacement in water BIC Co276) showing the iconic blue skeletal coloration. Photograph (Bucher et al. 1998). Mass was determined via an Ohaus by TA Courtney Scout SPX422 balance (precision = ± 0.01 g) that was 123 Coral Reefs verified for accuracy with a calibration weight prior to Skeletal density measurements. A YSI Pro 2030 was used to measure temperature (precision = ± 0.3 °C) and salinity (preci- Mean ( ± SE) skeletal densities for Heliopora coerulea of sion = ± 0.1 ppt). Skeletal densities were compared to 2.01 ± 0.06 g cm-3 in this study were higher than any of recent bulk skeletal densities of Indian Ocean scleractini- the scleractinian skeletal densities observed by Morgan and ans determined using analogous methods (Morgan and Kench (2012) (Fig. 2). Ocean acidification (OA) threatens Kench 2012). to reduce scleractinian coral skeletal density, which could lead to increased breakage of coral skeletal materials and Calcification rates decreased reef-building capacity (Hoegh-Guldberg et al. 2007). Whether distinct differences in the skeletal mor- The scaling of coral calcification rates represents a con- phology of H. coerulea may confer some resilience to OA siderable ongoing challenge owing to the three-dimen- by these reef-building octocorals remains to be tested
Recommended publications
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • Taxonomy and Phylogenetic Relationships of the Coral Genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae)
    Contributions to Zoology, 83 (3) 195-215 (2014) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae) Roberto Arrigoni1, 7, Zoe T. Richards2, Chaolun Allen Chen3, 4, Andrew H. Baird5, Francesca Benzoni1, 6 1 Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy 2 Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia 3Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan 4 Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan 5 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 6 Institut de Recherche pour le Développement, UMR227 Coreus2, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia 7 E-mail: [email protected] Key words: COI, evolution, histone H3, Lobophyllia, Pacific Ocean, rDNA, Symphyllia, systematics, taxonomic revision Abstract Molecular phylogeny of P. rowleyensis and P. vitiensis . 209 Utility of the examined molecular markers ....................... 209 Novel micromorphological characters in combination with mo- Acknowledgements ...................................................................... 210 lecular studies have led to an extensive revision of the taxonomy References ...................................................................................... 210 and systematics of scleractinian corals. In the present work, we Appendix .......................................................................................
    [Show full text]
  • Warm Seawater Temperature Promotes Substrate Colonization by the Blue Coral, Heliopora Coerulea
    Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea Author Christine Guzman, Michael Atrigenio, Chuya Shinzato, Porfirio Alino, Cecilia Conaco journal or PeerJ publication title volume 7 page range e7785 year 2019-09-27 Publisher PeerJ Rights (C) 2019 Guzman et al. Author's flag publisher URL http://id.nii.ac.jp/1394/00001286/ doi: info:doi/10.7717/peerj.7785 Creative Commons Attribution 4.0 International(https://creativecommons.org/licenses/by/4.0/) Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea Christine Guzman1,2, Michael Atrigenio1, Chuya Shinzato3, Porfirio Aliño1 and Cecilia Conaco1 1 Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines 2 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 3 Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba, Japan ABSTRACT Background: Heliopora coerulea, the blue coral, is a reef building octocoral that is reported to have a higher optimum temperature for growth compared to most scleractinian corals. This octocoral has been observed to grow over both live and dead scleractinians and to dominate certain reefs in the Indo-Pacific region. The molecular mechanisms underlying the ability of H. coerulea to tolerate warmer seawater temperatures and to effectively compete for space on the substrate remain to be elucidated. Methods: In this study, we subjected H. coerulea colonies to various temperatures for up to 3 weeks. The growth and photosynthetic efficiency rates of the coral colonies were measured. We then conducted pairwise comparisons of gene expression among the different coral tissue regions to identify genes and pathways that are expressed under different temperature conditions.
    [Show full text]
  • Research Article Influence of the Blue Coral Heliopora Coerulea on Scleractinian Coral Larval Recruitment
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Journal of Marine Biology Volume 2017, Article ID 6015143, 5 pages https://doi.org/10.1155/2017/6015143 Research Article Influence of the Blue Coral Heliopora coerulea on Scleractinian Coral Larval Recruitment Michael Atrigenio, Porfirio Aliño, and Cecilia Conaco Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines Correspondence should be addressed to Michael Atrigenio; [email protected] Received 16 November 2016; Revised 10 March 2017; Accepted 2 April 2017; Published 12 April 2017 Academic Editor: Yehuda Benayahu Copyright © 2017 Michael Atrigenio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The octocoral Heliopora coerulea has emerged as one of the most dominant reef-building corals in the Bolinao Reef Complex, northern Philippines. One of the possible mechanisms that may contribute to the success of H. coerulea over scleractinian corals is its ability to compete effectively for space on the reef by inhibiting the settlement of coral larvae in its immediate vicinity.To determine whether H. coerulea can indeed inhibit larval recruitment, settlement tiles were deployed inside H. coerulea aggregations or on hard substrate at a distance of about 2 to 3 meters away. After three months of deployment, only a single H. coerulea recruit was observed on tiles placed within aggregations whereas many different coral recruits were observed on tiles placed on substrate away from the blue coral.
    [Show full text]
  • Cnidarian Phylogenetic Relationships As Revealed by Mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1
    Kayal et al. BMC Evolutionary Biology 2013, 13:5 http://www.biomedcentral.com/1471-2148/13/5 RESEARCH ARTICLE Open Access Cnidarian phylogenetic relationships as revealed by mitogenomics Ehsan Kayal1,2*, Béatrice Roure3, Hervé Philippe3, Allen G Collins4 and Dennis V Lavrov1 Abstract Background: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum.
    [Show full text]
  • Transcriptome Analysis of the Reef-Building Octocoral, Heliopora
    www.nature.com/scientificreports OPEN Transcriptome analysis of the reef-building octocoral, Heliopora coerulea Received: 25 August 2017 Christine Guzman1,2, Chuya Shinzato3, Tsai-Ming Lu 4 & Cecilia Conaco1 Accepted: 9 May 2018 The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits Published: xx xx xxxx optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These fndings thus ofer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment. Octocorals are the most diverse coral group and can be found in various marine environments, including shallow tropical reefs, deep seamounts, and submarine canyons1. Tey reportedly exhibit greater resistance and resil- ience to environmental perturbations, particularly to thermal stress, compared to scleractinians2–4.
    [Show full text]
  • Target Substrata
    TARGET SUBSTRATA OVERVIEW CORALS AND THEIR RELATIVES STONY HEXACORALS OTHER HEXACORALS OCTOCORALS HYDROZOANS Acropora Sea Anemones Soft Corals Fire Coral Non-Acropora Zoanthids Sea Fans Lace Coral Black Coral Blue Coral Hydroids Corallimorpharians Organ Pipe OTHER SUBSTRATA Sponge Macroalgae Dead Coral Rock Coralline Algae Dead Coral With Algae Rubble Algal Assemblage Turf Algae Sand Silt CORALS AND THEIR RELATIVES STONY CORALS ACROPORA Phylum Cnidaria | Class Anthozoa | Sub-Class Hexacorallia | Order Scleractinia (Hard Corals) | Family Acroporidae | Genus Acropora Acropora is one genus within the family of Acroporidae; Generally, the species are characterized by the presence of an axial (terminal) corallite (skeleton of an individual polyp) at the branch tips surrounded by radial corallites; The name Acropora is derived from the Greek “akron” which means summit. Acropora Branching Barefoot Conservation | TARGET SUBSTRATA | July 2016 1 Acropora Bottlebrush Acropora Digitate Acropora Tabulate Barefoot Conservation | TARGET SUBSTRATA | July 2016 2 Acropora Submassive Acropora Encrusting Non-Acropora Phylum Cnidaria | Class Anthozoa | Sub-Class Hexacorallia | Order Scleractinia (Hard Corals) | Family Acroporidae Coral Branching Barefoot Conservation | TARGET SUBSTRATA | July 2016 3 (continued) Coral Branching Coral Massive Barefoot Conservation | TARGET SUBSTRATA | July 2016 4 Coral Encrusting Coral Foliose Coral Submassive Barefoot Conservation | TARGET SUBSTRATA | July 2016 5 (continued) Coral Submassive Coral Mushroom Barefoot Conservation
    [Show full text]
  • Prey Preference Follows Phylogeny: Evolutionary Dietary Patterns Within the Marine Gastropod Group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A
    Goodheart et al. BMC Evolutionary Biology (2017) 17:221 DOI 10.1186/s12862-017-1066-0 RESEARCHARTICLE Open Access Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia) Jessica A. Goodheart1,2* , Adam L. Bazinet1,3, Ángel Valdés4, Allen G. Collins2 and Michael P. Cummings1 Abstract Background: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA- Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. Results: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia).
    [Show full text]
  • The Fauna and Geography of the Maldive and Laccadive Archipelagoes
    Part II. of Volume II. will be published on November 75, igo^. The Fauna and Geography of the Maldive and Laccadive Archipelagoes Being the Account of the Work carried on and of the Collections made by an Expedition during the years 1899 ^^^ 1900 Edited by J. Stanley Gardiner, M.A. Fellow of Gonville and Caius College and late Balfour Student of the University of Cambridge. VOLUME II. PART I. With Plates XXVI—XXXIV Cambridge : at the University Press. London: C. J. Clay and Sons, Cambridge University Press Warehouse, Ave Maria Lane. Price Fifteen Shillings net. The Fauna and Geography of the Maldive and Laccadive Archipelagoes VOLUME li. PART I. HonUon: C. J. CLAY and SONS, CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, AVE MARIA LANE, AND H. K. LEWIS, 136, GOWEE STREET, W.C. ©lasgoto: 50, WELLINGTON STREET. Uripng: F. A. BROCKHAUS. ilrlD gorit: THE MACMILLAN COMPANY. ISomtia!) anl) Calrutta: MACMILLAN AND CO., Lid. [All Rights reserved.'] ' 4^ liS The Fauna and Geography of the ^^ Maldive and Laccadive Archipelagoes Being the Account of the Work carried on and of the Collections made by an Expedition during the years 1899 and 1900 Edited by J. Stanley Gardiner, M.A. Fellow of Gonville and Caius College and late Balfour Student of the University of Cambridge. VOLUME II. PART I. With Plates XXVI—XXXIV Cambridge : at the University Press. 1903 r o a :n-i : CAMBRIDGE PRINTED BY J. AND C. F. CLAY, AT THE UNIVERSITY PRESS. CONTENTS OF VOL. II. PAET I. Reports. PAGE 1. The Alcyonaria of the Maldives. Part I. The Genera Xenia, Telesto, Spongodes, Nephthya, Paraspongodes, Chironephthya, Siphonogorgia, Solenocaulon, and Melitodes.
    [Show full text]
  • Taxonomic Classification of the Reef Coral Family
    Zoological Journal of the Linnean Society, 2016, 178, 436–481. With 14 figures Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia) DANWEI HUANG1*, ROBERTO ARRIGONI2,3*, FRANCESCA BENZONI3, HIRONOBU FUKAMI4, NANCY KNOWLTON5, NATHAN D. SMITH6, JAROSŁAW STOLARSKI7, LOKE MING CHOU1 and ANN F. BUDD8 1Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 3Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy 4Department of Marine Biology and Environmental Science, University of Miyazaki, Miyazaki 889- 2192, Japan 5Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA 6The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA 7Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland 8Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA Received 14 July 2015; revised 19 December 2015; accepted for publication 31 December 2015 Lobophylliidae is a family-level clade of corals within the ‘robust’ lineage of Scleractinia. It comprises species traditionally classified as Indo-Pacific ‘mussids’, ‘faviids’, and ‘pectiniids’. Following detailed revisions of the closely related families Merulinidae, Mussidae, Montastraeidae, and Diploastraeidae, this monograph focuses on the taxonomy of Lobophylliidae. Specifically, we studied 44 of a total of 54 living lobophylliid species from all 11 genera based on an integrative analysis of colony, corallite, and subcorallite morphology with molecular sequence data.
    [Show full text]
  • Sexual Reproduction in Octocorals
    Vol. 443: 265–283, 2011 MARINE ECOLOGY PROGRESS SERIES Published December 20 doi: 10.3354/meps09414 Mar Ecol Prog Ser REVIEW Sexual reproduction in octocorals Samuel E. Kahng1,*, Yehuda Benayahu2, Howard R. Lasker3 1Hawaii Pacific University, College of Natural Science, Waimanalo, Hawaii 96795, USA 2Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 3Department of Geology and Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo, New York 14260, USA ABSTRACT: For octocorals, sexual reproductive processes are fundamental to maintaining popu- lations and influencing macroevolutionary processes. While ecological data on octocorals have lagged behind their scleractinian counterparts, the proliferation of reproductive studies in recent years now enables comparisons between these important anthozoan taxa. Here we review the systematic and biogeographic patterns of reproductive biology within Octocorallia from 182 spe- cies across 25 families and 79 genera. As in scleractinians, sexuality in octocorals appears to be highly conserved. However, gonochorism (89%) in octocorals predominates, and hermaphro- ditism is relatively rare, in stark contrast to scleractinians. Mode of reproduction is relatively plas- tic and evenly split between broadcast spawning (49%) and the 2 forms of brooding (internal 40% and external 11%). External surface brooding which appears to be absent in scleractinians may represent an intermediate strategy to broadcast spawning and internal brooding and may be enabled by chemical defenses. Octocorals tend to have large oocytes, but size bears no statistically significant relationship to sexuality, mode of reproduction, or polyp fecundity. Oocyte size is sig- nificantly associated with subclade suggesting evolutionary conservatism, and zooxanthellate species have significantly larger oocytes than azooxanthellate species.
    [Show full text]
  • Jewels of the Deep Sea - Precious Corals
    Jewels of the Deep Sea - Precious Corals Masanori Nonaka1 & Katherine Muzik2 1 Okinawa Churaumi Aquarium, 424 Ishikawa Motobu-Cho, Okinawa 900-0206, Japan Contact e-mail: [email protected] 2 Japan Underwater Films, 617 Yamazato, Motobu-cho, Okinawa 905-0219, Japan Introduction Precious Corals belong to the Family Coralliidae (Anthozoa: Octocorallia) and are well-known for their red or pink skeletons that have been used since antiquity for ornament, medicine, talismans and currency. In Okinawa, they are found living at depths from 200 to about 300m, but in northern Japan they are found in shallower waters, generally about 150m deep. We have been keeping and displaying several local species of Coralliidae since the opening of the Okinawa Churaumi Aquarium on November 1, 2002 (Nonaka et al., 2006). One of the most difficult groups of coral to keep, we have thus far succeeded in keeping individuals in captivity for only about two years. Nevertheless, we can gather valuable data from living precious corals being kept in a tank. Although many people are familiar with the word “coral”, there are relatively few people who have ever seen coral alive. Even fewer people have seen deep-sea species of precious coral alive. Public aquariums can provide an excellent opportunity to introduce living corals from both shallow and deep water to visitors, and to encourage interest in them and other marine creatures too. But, although aquariums can and should serve as educational facilities, it is difficult to get visitors to notice these tranquil, quiet creatures! Masanori Nonaka We have tried and failed to attract attention to precious corals by special signs and lighting, so now we at the Churaumi Aquarium are planning a special exhibit about the relationship of precious coral to cultural anthropology.
    [Show full text]