Poisson's Equation in Electrostatics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrostatics Vs Magnetostatics Electrostatics Magnetostatics
Electrostatics vs Magnetostatics Electrostatics Magnetostatics Stationary charges ⇒ Constant Electric Field Steady currents ⇒ Constant Magnetic Field Coulomb’s Law Biot-Savart’s Law 1 ̂ ̂ 4 4 (Inverse Square Law) (Inverse Square Law) Electric field is the negative gradient of the Magnetic field is the curl of magnetic vector electric scalar potential. potential. 1 ′ ′ ′ ′ 4 |′| 4 |′| Electric Scalar Potential Magnetic Vector Potential Three Poisson’s equations for solving Poisson’s equation for solving electric scalar magnetic vector potential potential. Discrete 2 Physical Dipole ′′′ Continuous Magnetic Dipole Moment Electric Dipole Moment 1 1 1 3 ∙̂̂ 3 ∙̂̂ 4 4 Electric field cause by an electric dipole Magnetic field cause by a magnetic dipole Torque on an electric dipole Torque on a magnetic dipole ∙ ∙ Electric force on an electric dipole Magnetic force on a magnetic dipole ∙ ∙ Electric Potential Energy Magnetic Potential Energy of an electric dipole of a magnetic dipole Electric Dipole Moment per unit volume Magnetic Dipole Moment per unit volume (Polarisation) (Magnetisation) ∙ Volume Bound Charge Density Volume Bound Current Density ∙ Surface Bound Charge Density Surface Bound Current Density Volume Charge Density Volume Current Density Net , Free , Bound Net , Free , Bound Volume Charge Volume Current Net , Free , Bound Net ,Free , Bound 1 = Electric field = Magnetic field = Electric Displacement = Auxiliary -
Review of Electrostatics and Magenetostatics
Review of electrostatics and magenetostatics January 12, 2016 1 Electrostatics 1.1 Coulomb’s law and the electric field Starting from Coulomb’s law for the force produced by a charge Q at the origin on a charge q at x, qQ F (x) = 2 x^ 4π0 jxj where x^ is a unit vector pointing from Q toward q. We may generalize this to let the source charge Q be at an arbitrary postion x0 by writing the distance between the charges as jx − x0j and the unit vector from Qto q as x − x0 jx − x0j Then Coulomb’s law becomes qQ x − x0 x − x0 F (x) = 2 0 4π0 jx − xij jx − x j Define the electric field as the force per unit charge at any given position, F (x) E (x) ≡ q Q x − x0 = 3 4π0 jx − x0j We think of the electric field as existing at each point in space, so that any charge q placed at x experiences a force qE (x). Since Coulomb’s law is linear in the charges, the electric field for multiple charges is just the sum of the fields from each, n X qi x − xi E (x) = 4π 3 i=1 0 jx − xij Knowing the electric field is equivalent to knowing Coulomb’s law. To formulate the equivalent of Coulomb’s law for a continuous distribution of charge, we introduce the charge density, ρ (x). We can define this as the total charge per unit volume for a volume centered at the position x, in the limit as the volume becomes “small”. -
On the Covariant Representation of Integral Equations of the Electromagnetic Field
On the covariant representation of integral equations of the electromagnetic field Sergey G. Fedosin PO box 614088, Sviazeva str. 22-79, Perm, Perm Krai, Russia E-mail: [email protected] Gauss integral theorems for electric and magnetic fields, Faraday’s law of electromagnetic induction, magnetic field circulation theorem, theorems on the flux and circulation of vector potential, which are valid in curved spacetime, are presented in a covariant form. Covariant formulas for magnetic and electric fluxes, for electromotive force and circulation of the vector potential are provided. In particular, the electromotive force is expressed by a line integral over a closed curve, while in the integral, in addition to the vortex electric field strength, a determinant of the metric tensor also appears. Similarly, the magnetic flux is expressed by a surface integral from the product of magnetic field induction by the determinant of the metric tensor. A new physical quantity is introduced – the integral scalar potential, the rate of change of which over time determines the flux of vector potential through a closed surface. It is shown that the commonly used four-dimensional Kelvin-Stokes theorem does not allow one to deduce fully the integral laws of the electromagnetic field and in the covariant notation requires the addition of determinant of the metric tensor, besides the validity of the Kelvin-Stokes theorem is limited to the cases when determinant of metric tensor and the contour area are independent from time. This disadvantage is not present in the approach that uses the divergence theorem and equation for the dual electromagnetic field tensor. -
Units and Magnitudes (Lecture Notes)
physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass. -
Weberˇs Planetary Model of the Atom
Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
We Continue to Compare the Electrostatic and Magnetostatic Fields. the Electrostatic Field Is Conservative
We continue to compare the electrostatic and magnetostatic fields. The electrostatic field is conservative: This allows us to define the potential V: dl because a b is independent of the path. If a vector field has no curl (i.e., is conservative), it must be something's gradient. Gravity is conservative. Therefore you do see water flowing in such a loop without a pump in the physical world. For the magnetic field, If a vector field has no divergence (i.e., is solenoidal), it must be something's curl. In other words, the curl of a vector field has zero divergence. Let’s use another physical context to help you understand this math: Ampère’s law J ds 0 Kirchhoff's current law (KCL) S Since , we can define a vector field A such that Notice that for a given B, A is not unique. For example, if then , because Similarly, for the electrostatic field, the scalar potential V is not unique: If then You have the freedom to choose the reference (Ampère’s law) Going through the math, you will get Here is what means: Just notation. Notice that is a vector. Still remember what means for a scalar field? From a previous lecture: Recall that the choice for A is not unique. It turns out that we can always choose A such that (Ampère’s law) The choice for A is not unique. We choose A such that Here is what means: Notice that is a vector. Thus this is actually three equations: Recall the definition of for a scalar field from a previous lecture: Poisson’s equation for the magnetic field is actually three equations: Compare Poisson’s equation for the magnetic field with that for the electrostatic field: Given J, you can solve A, from which you get B by Given , you can solve V, from which you get E by Exams (Test 2 & Final) problems will not involve the vector potential. -
Units and Magnitudes (Lecture Notes)
physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass. -
Vocabulary of Magnetism
TECHNotes The Vocabulary of Magnetism Symbols for key magnetic parameters continue to maximum energy point and the value of B•H at represent a challenge: they are changing and vary this point is the maximum energy product. (You by author, country and company. Here are a few may have noticed that typing the parentheses equivalent symbols for selected parameters. for (BH)MAX conveniently avoids autocorrecting Subscripts in symbols are often ignored so as to the two sequential capital letters). Units of simplify writing and typing. The subscripted letters maximum energy product are kilojoules per are sometimes capital letters to be more legible. In cubic meter, kJ/m3 (SI) and megagauss•oersted, ASTM documents, symbols are italicized. According MGOe (cgs). to NIST’s guide for the use of SI, symbols are not italicized. IEC uses italics for the main part of the • µr = µrec = µ(rec) = recoil permeability is symbol, but not for the subscripts. I have not used measured on the normal curve. It has also been italics in the following definitions. For additional called relative recoil permeability. When information the reader is directed to ASTM A340[11] referring to the corresponding slope on the and the NIST Guide to the use of SI[12]. Be sure to intrinsic curve it is called the intrinsic recoil read the latest edition of ASTM A340 as it is permeability. In the cgs-Gaussian system where undergoing continual updating to be made 1 gauss equals 1 oersted, the intrinsic recoil consistent with industry, NIST and IEC usage. equals the normal recoil minus 1. -
Introduction to Electrostatics
Introduction to Electrostatics Charles Augustin de Coulomb (1736 - 1806) December 23, 2000 Contents 1 Coulomb's Law 2 2 Electric Field 4 3 Gauss's Law 7 4 Di®erential Form of Gauss's Law 9 5 An Equation for E; the Scalar Potential 10 r £ 5.1 Conservative Potentials . 11 6 Poisson's and Laplace's Equations 13 7 Energy in the Electric Field; Capacitance; Forces 15 7.1 Conductors . 20 7.2 Forces on Charged Conductors . 22 1 8 Green's Theorem 27 8.1 Green's Theorem . 29 8.2 Applying Green's Theorem 1 . 30 8.3 Applying Green's Theorem 2 . 31 8.3.1 Greens Theorem with Dirichlet B.C. 34 8.3.2 Greens Theorem with Neumann B.C. 36 2 We shall follow the approach of Jackson, which is more or less his- torical. Thus we start with classical electrostatics, pass on to magneto- statics, add time dependence, and wind up with Maxwell's equations. These are then expressed within the framework of special relativity. The remainder of the course is devoted to a broad range of interesting and important applications. This development may be contrasted with the more formal and el- egant approach which starts from the Maxwell equations plus special relativity and then proceeds to work out electrostatics and magneto- statics - as well as everything else - as special cases. This is the method of e.g., Landau and Lifshitz, The Classical Theory of Fields. The ¯rst third of the course, i.e., Physics 707, deals with physics which should be familiar to everyone; what will perhaps not be familiar are the mathematical techniques and functions that will be introduced in order to solve certain kinds of problems. -
Magnetic Immunity of the MRAM Devices
APPLICATION NOTE AN-MEM-003 Magnetic Immunity of the MRAM Devices Table 1: Cross Reference of Applicable Products Product Name Manufacturer Part Number SMD # Device Type Internal PIC# 16Mb MRAM Device UT8MR2M8 5962-12227 01 WP01 64Mb MRAM Device UT8MR8M8 5962-13207 01 MQ09 *PIC = Product Identification Code 1.0 Overview CAES Colorado Springs offers a 16Mb and 64Mb Non-Volatile Magnetoresistive Random Access Memory (MRAM) device. The MRAM devices are designed specifically for operation in both HiRel and Space environments. This application note addresses concerns with the magnetic immunity of these devices. CAES has determined that the MRAM devices have no magnetic risk in the space environment and recommends proper handling to address terrestrial environments. 2.0 Magnetic Fields All magnetic fields are caused by electrical charge in motion. Even the fields from a stationary permanent magnet RELEASED RELEASED are the result of the rotation (quantum spin) of electrons within the material. There are two "components" of a magnetic field which are both commonly called "magnetic field." They are the B field (historically called Magnetic Induction) and the H field (historically called Magnetic Field). They are related by the equation B = H + 4pM where M is a term called "Magnetization" or "Magnetic Polarization" and is a property of the materials through which the 11 fields pass. Technically, M is the magnetic moment of the material per unit volume. To obtain the total B field, if considering the field in a volume of space, the free (unbound field) H plus the bound fields (magnetic dipoles) M / 13 must be known. -
Roadmap on Transformation Optics 5 Martin Mccall 1,*, John B Pendry 1, Vincenzo Galdi 2, Yun Lai 3, S
Page 1 of 59 AUTHOR SUBMITTED MANUSCRIPT - draft 1 2 3 4 Roadmap on Transformation Optics 5 Martin McCall 1,*, John B Pendry 1, Vincenzo Galdi 2, Yun Lai 3, S. A. R. Horsley 4, Jensen Li 5, Jian 6 Zhu 5, Rhiannon C Mitchell-Thomas 4, Oscar Quevedo-Teruel 6, Philippe Tassin 7, Vincent Ginis 8, 7 9 9 9 6 10 8 Enrica Martini , Gabriele Minatti , Stefano Maci , Mahsa Ebrahimpouri , Yang Hao , Paul Kinsler 11 11,12 13 14 15 9 , Jonathan Gratus , Joseph M Lukens , Andrew M Weiner , Ulf Leonhardt , Igor I. 10 Smolyaninov 16, Vera N. Smolyaninova 17, Robert T. Thompson 18, Martin Wegener 18, Muamer Kadic 11 18 and Steven A. Cummer 19 12 13 14 Affiliations 15 1 16 Imperial College London, Blackett Laboratory, Department of Physics, Prince Consort Road, 17 London SW7 2AZ, United Kingdom 18 19 2 Field & Waves Lab, Department of Engineering, University of Sannio, I-82100 Benevento, Italy 20 21 3 College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano 22 Science and Technology, Soochow University, Suzhou 215006, China 23 24 4 University of Exeter, Department of Physics and Astronomy, Stocker Road, Exeter, EX4 4QL United 25 26 Kingdom 27 5 28 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, 29 United Kingdom 30 31 6 KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden 32 33 7 Department of Physics, Chalmers University , SE-412 96 Göteborg, Sweden 34 35 8 Vrije Universiteit Brussel Pleinlaan 2, 1050 Brussel, Belgium 36 37 9 Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, University of Siena, Via Roma, 38 39 56 53100 Siena, Italy 40 10 41 School of Electronic Engineering and Computer Science, Queen Mary University of London, 42 London E1 4FZ, United Kingdom 43 44 11 Physics Department, Lancaster University, Lancaster LA1 4 YB, United Kingdom 45 46 12 Cockcroft Institute, Sci-Tech Daresbury, Daresbury WA4 4AD, United Kingdom.