Electrostatics in Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrostatics Vs Magnetostatics Electrostatics Magnetostatics
Electrostatics vs Magnetostatics Electrostatics Magnetostatics Stationary charges ⇒ Constant Electric Field Steady currents ⇒ Constant Magnetic Field Coulomb’s Law Biot-Savart’s Law 1 ̂ ̂ 4 4 (Inverse Square Law) (Inverse Square Law) Electric field is the negative gradient of the Magnetic field is the curl of magnetic vector electric scalar potential. potential. 1 ′ ′ ′ ′ 4 |′| 4 |′| Electric Scalar Potential Magnetic Vector Potential Three Poisson’s equations for solving Poisson’s equation for solving electric scalar magnetic vector potential potential. Discrete 2 Physical Dipole ′′′ Continuous Magnetic Dipole Moment Electric Dipole Moment 1 1 1 3 ∙̂̂ 3 ∙̂̂ 4 4 Electric field cause by an electric dipole Magnetic field cause by a magnetic dipole Torque on an electric dipole Torque on a magnetic dipole ∙ ∙ Electric force on an electric dipole Magnetic force on a magnetic dipole ∙ ∙ Electric Potential Energy Magnetic Potential Energy of an electric dipole of a magnetic dipole Electric Dipole Moment per unit volume Magnetic Dipole Moment per unit volume (Polarisation) (Magnetisation) ∙ Volume Bound Charge Density Volume Bound Current Density ∙ Surface Bound Charge Density Surface Bound Current Density Volume Charge Density Volume Current Density Net , Free , Bound Net , Free , Bound Volume Charge Volume Current Net , Free , Bound Net ,Free , Bound 1 = Electric field = Magnetic field = Electric Displacement = Auxiliary -
Introduction to Electrets: Principles, Equations, Experimental Techniques
Introduction to electrets: Principles, equations, experimental techniques Gerhard M. Sessler Darmstadt University of Technology Institute for Telecommunications Merckstrasse 25, 64283 Darmstadt, Germany [email protected] Darmstadt University of Technology • Institute for Telecommunications Overview Principles Charges Materials Electret classes Equations Fields Forces Currents Charge transport Experimental techniques Charging Surface potential Thermally-stimulated discharge Dielectric measurements Charge distribution (surface) Charge distribution (volume) Darmstadt University of Technology • Institute for Telecommunications Electret charges Darmstadt University of Technology • Institute for Telecommunications Energy diagram and density of states for a polymer Darmstadt University of Technology • Institute for Telecommunications Electret materials Polymers Anorganic materials Fluoropolymers (PTFE, FEP) Silicon oxide (SiO 2) Polyethylene (HDPE, LDPE, XLPE) Silicon nitride (Si 3N4) Polypropylene (PP) Aluminum oxide (Al 2O3) Polyethylene terephtalate (PET) Glas (SiO 2 + Na, S, Se, B, ...) Polyimid (PI) Photorefractive materials Polymethylmethacrylate (PMMA) • Polyvinylidenefluoride (PVDF) • Ethylene vinyl acetate (EVA) • • • Cellular and porous polymers Cellular PP Porous PTFE Darmstadt University of Technology • Institute for Telecommunications Charged or polarized dielectrics Category Materials Charge or polarization Properties Applications Density Geometry [mC/m2 ] Real-charge External electric FEP, SiO electrets 2 0.1 - 1 field -
Review of Electrostatics and Magenetostatics
Review of electrostatics and magenetostatics January 12, 2016 1 Electrostatics 1.1 Coulomb’s law and the electric field Starting from Coulomb’s law for the force produced by a charge Q at the origin on a charge q at x, qQ F (x) = 2 x^ 4π0 jxj where x^ is a unit vector pointing from Q toward q. We may generalize this to let the source charge Q be at an arbitrary postion x0 by writing the distance between the charges as jx − x0j and the unit vector from Qto q as x − x0 jx − x0j Then Coulomb’s law becomes qQ x − x0 x − x0 F (x) = 2 0 4π0 jx − xij jx − x j Define the electric field as the force per unit charge at any given position, F (x) E (x) ≡ q Q x − x0 = 3 4π0 jx − x0j We think of the electric field as existing at each point in space, so that any charge q placed at x experiences a force qE (x). Since Coulomb’s law is linear in the charges, the electric field for multiple charges is just the sum of the fields from each, n X qi x − xi E (x) = 4π 3 i=1 0 jx − xij Knowing the electric field is equivalent to knowing Coulomb’s law. To formulate the equivalent of Coulomb’s law for a continuous distribution of charge, we introduce the charge density, ρ (x). We can define this as the total charge per unit volume for a volume centered at the position x, in the limit as the volume becomes “small”. -
Note PERFORMANCE of ELECTRET IONIZATION CHAMBERS IN
Note PERFORMANCE OF ELECTRET IONIZATION CHAMBERS IN MAGNETIC FIELD P. Kotrappa,* L. R. Stieff,* T. F. Mengers,† and R. D. Shull† The change in charge is measured using a portable charge Abstract—Electret ionization chambers are widely used for reader and is the measure of the integrated ionization measuring radon and radiation. The radiation measured in- cludes alpha, beta, and gamma radiation. These detectors do over the sampling period. These chambers are widely not have any electronics and as such can be introduced into used for measuring radon in air (Kotrappa et al. 1990) magnetic field regions. It is of interest to study the effect of and environmental gamma radiation (Fjeld et al. 1994; magnetic fields on the performance of these detectors. Relative Hobbs et al. 1996). These chambers are also used for responses are measured with and without magnetic fields present. Quantitative responses are measured as the magnetic measuring alpha and beta contamination levels (Kasper field is varied from 8 kA/m to 716 kA/m (100 to 9,000 gauss). 1999; Kotrappa et al. 1995). One feature of these No significant effect is observed for measuring alpha radiation detectors, which makes them unique, is that there are no and gamma radiation. However, a significant systematic effect electronic components or power supply associated with is observed while measuring beta radiation from a 90Sr-Y source. Depending upon the field orientation, the relative the detectors. Because of this property, these detectors response increased from 1.0 to 2.7 (vertical position) and can be used in areas with magnetic fields present without decreased from 1.0 to 0.60 (horizontal position). -
Physics 112: Classical Electromagnetism, Fall 2013 Birefringence Notes
Physics 112: Classical Electromagnetism, Fall 2013 Birefringence Notes 1 A tensor susceptibility? The electrons bound within, and binding, the atoms of a dielectric crystal are not uniformly dis- tributed, but are restricted in their motion by the potentials which confine them. In response to an applied electric field, they may therefore move a greater or lesser distance, depending upon the strength of their confinement in the field direction. As a result, the induced polarization varies not only with the strength of the applied field, but also with its direction. The susceptibility{ and properties which depend upon it, such as the refractive index{ are therefore anisotropic, and cannot be characterized by a single value. The scalar electric susceptibility, χe, is defined to be the coefficient which relates the value of the ~ ~ local electric field, Eloc, to the local value of the polarization, P : ~ ~ P = χe0Elocal: (1) As we discussed in the last seminar we can `promote' this relation to a tensor relation with χe ! (χe)ij. In this case the dielectric constant is also a tensor and takes the form ij = [δij + (χe)ij] 0: (2) Figure 1: A cartoon showing how the electron is held by anisotropic springs{ causing an electric susceptibility which is different when the electric field is pointing in different directions. How does this happen in practice? In Fig. 1 we can see that in a crystal, for instance, the electrons will in general be held in bonds which are not spherically symmetric{ i.e., they are anisotropic. 1 Therefore, it will be easier to polarize the material in certain directions than it is in others. -
4 Lightdielectrics.Pdf
4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again, using E as the electric field of light, v as the speed of light in a material and z as its direction of propagation. !2 1 ! 2E ! 2E 1 ! 2E # n2 & ! 2E # & . 2 E= 2 2 " 2 = % 2 ( 2 = 2 2 !z c !t !z $ v ' !t $% c '( !t (Read the variation in the electric field with respect distance traveled is proportional to its variation with respect to time.) The refractive index, n, (also represented η) describes how matter affects light propagation: through the electric permittivity, ε, and the magnetic permeability, µ. ! µ n = !0 µ0 These properties describe how well a medium supports (permits the transmission of) electric and magnetic fields, respectively. The terms ε0 and µ0 are reference values: the permittivity and permeability of free space. Consequently, the refractive index for a vacuum is unity. In chemical materials ε is always larger than ε0, reflecting the interaction of the electric field of the incident beam with the electrons of the material. During this interaction, the energy from the electric field is transiently stored in the medium as the electrons in the material are temporarily aligned with the field. This phenomenon is referred to as polarization, P, in the sense that the charges of the medium are temporarily separated. (This must not be confused with the polarization, which refers to the orientation or behavior of the electric field.) This stored energy is re-radiated, but the beam travel is slowed by interaction with the material. -
How to Make an Electret the Device That Permanently Maintains an Electric Charge by C
How to Make an Electret the Device That Permanently Maintains an Electric Charge by C. L. Strong Scientific America, November, 1960 Danger Level 4: (POSSIBLY LETHAL!!) Alternative Science Resources World Clock Synthesis Home --------------------- THE HISTORY OF SCIENCE IS A TREASURE house for the amateur experimenter. For example, many devices invented by early workers in electricity and magnetism attract little attention today because they have no practical application, yet these devices remain fascinating in themselves. Consider the so-called electret. This device is a small cake of specially prepared wax that has the property of permanently maintaining an electric field; it is the electrical analogue of a permanent magnet. No one knows in precise detail how an electret works, nor does it presently have a significant task to perform. George O. Smith, an electronics specialist of Rumson, N.J., points out, however, that this is no obstacle to the enjoyment of the electret by the amateur. Moreover, the amateur with access to a source of high-voltage current can make an electret at virtually no cost. "For more than 2,000 years," writes Smith, "it was suspected that the magnetic attraction of the lodestone and the electrostatic attraction of the electrophorus were different manifestations of the same phenomenon. This suspicion persisted from the time of Thales of Miletus (600 B.C.) to that of William Gilbert (A.D. 1600). After the publication of Gilbert's treatise De Magnete, the suspicion graduated into a theory that was supported by many experiments conducted to show that for every magnetic effect there was an electric analogue, and vice versa. -
EM Dis Ch 5 Part 2.Pdf
1 LOGO Chapter 5 Electric Field in Material Space Part 2 iugaza2010.blogspot.com Polarization(P) in Dielectrics The application of E to the dielectric material causes the flux density to be grater than it would be in free space. D oE P P is proportional to the applied electric field E P e oE Where e is the electric susceptibility of the material - Measure of how susceptible (or sensitive) a given dielectric is to electric field. 3 D oE P oE e oE oE(1 e) oE( r) D o rE E o r r1 e o permitivity of free space permitivity of dielectric relative permitivity r 4 Dielectric constant or(relative permittivity) εr Is the ratio of the permittivity of the dielectric to that of free space. o r permitivity of dielectric relative permitivity r o permitivity of free space 5 Dielectric Strength Is the maximum electric field that a dielectric can withstand without breakdown. o r Material Dielectric Strength εr E(V/m) Water(sea) 80 7.5M Paper 7 12M Wood 2.5-8 25M Oil 2.1 12M Air 1 3M 6 A parallel plate capacitor with plate separation of 2mm has 1kV voltage applied to its plate. If the space between the plate is filled with polystyrene(εr=2.55) Find E,P V 1000 E 500 kV / m d 2103 2 P e oE o( r1)E o(1 2.55)(500k) 6.86 C / m 7 In a dielectric material Ex=5 V/m 1 2 and P (3a x a y 4a z )nc/ m 10 Find (a) electric susceptibility e (b) E (c) D 1 (3) 10 (a)P e oE e 2.517 o(5) P 1 (3a x a y 4a z ) (b)E 5a x 1.67a y 6.67a z e o 10 (2.517) o (c)D E o rE o rE o( e1)E 2 139.78a x 46.6a y 186.3a z pC/m 8 In a slab of dielectric -
We Continue to Compare the Electrostatic and Magnetostatic Fields. the Electrostatic Field Is Conservative
We continue to compare the electrostatic and magnetostatic fields. The electrostatic field is conservative: This allows us to define the potential V: dl because a b is independent of the path. If a vector field has no curl (i.e., is conservative), it must be something's gradient. Gravity is conservative. Therefore you do see water flowing in such a loop without a pump in the physical world. For the magnetic field, If a vector field has no divergence (i.e., is solenoidal), it must be something's curl. In other words, the curl of a vector field has zero divergence. Let’s use another physical context to help you understand this math: Ampère’s law J ds 0 Kirchhoff's current law (KCL) S Since , we can define a vector field A such that Notice that for a given B, A is not unique. For example, if then , because Similarly, for the electrostatic field, the scalar potential V is not unique: If then You have the freedom to choose the reference (Ampère’s law) Going through the math, you will get Here is what means: Just notation. Notice that is a vector. Still remember what means for a scalar field? From a previous lecture: Recall that the choice for A is not unique. It turns out that we can always choose A such that (Ampère’s law) The choice for A is not unique. We choose A such that Here is what means: Notice that is a vector. Thus this is actually three equations: Recall the definition of for a scalar field from a previous lecture: Poisson’s equation for the magnetic field is actually three equations: Compare Poisson’s equation for the magnetic field with that for the electrostatic field: Given J, you can solve A, from which you get B by Given , you can solve V, from which you get E by Exams (Test 2 & Final) problems will not involve the vector potential. -
Notes 4 Maxwell's Equations
ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2020 Notes 4 Maxwell’s Equations Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present an overview of Maxwell’s equations. A much more thorough discussion of Maxwell’s equations may be found in the class notes for ECE 3318: http://courses.egr.uh.edu/ECE/ECE3318 Notes 10: Electric Gauss’s law Notes 18: Faraday’s law Notes 28: Ampere’s law Notes 28: Magnetic Gauss law . D. Fleisch, A Student’s Guide to Maxwell’s Equations, Cambridge University Press, 2008. 2 Electromagnetic Fields Four vector quantities E electric field strength [Volt/meter] D electric flux density [Coulomb/meter2] H magnetic field strength [Amp/meter] B magnetic flux density [Weber/meter2] or [Tesla] Each are functions of space and time e.g. E(x,y,z,t) J electric current density [Amp/meter2] 3 ρv electric charge density [Coulomb/meter ] 3 MKS units length – meter [m] mass – kilogram [kg] time – second [sec] Some common prefixes and the power of ten each represent are listed below femto - f - 10-15 centi - c - 10-2 mega - M - 106 pico - p - 10-12 deci - d - 10-1 giga - G - 109 nano - n - 10-9 deka - da - 101 tera - T - 1012 micro - μ - 10-6 hecto - h - 102 peta - P - 1015 milli - m - 10-3 kilo - k - 103 4 Maxwell’s Equations (Time-varying, differential form) ∂B ∇×E =− ∂t ∂D ∇×HJ = + ∂t ∇⋅B =0 ∇⋅D =ρv 5 Maxwell James Clerk Maxwell (1831–1879) James Clerk Maxwell was a Scottish mathematician and theoretical physicist. -
Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos
sustainability Article Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos Yongjun Xiao 1, Chao Guo 2, Qingdong Zeng 1, Zenggang Xiong 1, Yunwang Ge 2, Wenqing Chen 2, Jun Wan 3,4,* and Bo Wang 2,* 1 School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China; [email protected] (Y.X.); [email protected] (Q.Z.); [email protected] (Z.X.) 2 School of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, China; [email protected] (C.G.); [email protected] (Y.G.); [email protected] (W.C.) 3 State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China 4 Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China * Correspondence: [email protected] (J.W.); [email protected] (B.W.) Abstract: Traditional electronic pianos mostly adopt a gantry type and a large number of rigid keys, and most keyboard sensors of the electronic piano require additional power supply during playing, which poses certain challenges for portable electronic products. Here, we demonstrated a fluorinated ethylene propylene (FEP)-based electret nanogenerator (ENG), and the output electrical performances of the ENG under different external pressures and frequencies were systematically characterized. At a fixed frequency of 4 Hz and force of 4 N with a matched load resistance of 200 MW, an output 2 power density of 20.6 mW/cm could be achieved. Though the implementation of a signal processing circuit, ENG-based, self-powered pressure sensors have been demonstrated for self-powered, flexible Citation: Xiao, Y.; Guo, C.; Zeng, Q.; electronic pianos. -
Charge Storage in Electret Polymers: Mechanisms, Characterization and Applications
Charge Storage in Electret Polymers: Mechanisms, Characterization and Applications Habilitationsschrift zur Erlangung des akademischen Grades doctor rerum naturalium habilitatus (Dr. rer. nat. habil.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Universit¨at Potsdam vorgelegt von Dr. Axel Mellinger geb. am 25. August 1967 in M¨unchen Potsdam, 06. Dezember 2004 iii Abstract Electrets are materials capable of storing oriented dipoles or an electric surplus charge for long periods of time. The term “electret” was coined by Oliver Heaviside in analogy to the well-known word “magnet”. Initially regarded as a mere scientific curiosity, electrets became increasingly imporant for applications during the second half of the 20th century. The most famous example is the electret condenser microphone, developed in 1962 by Sessler and West. Today, these devices are produced in annual quantities of more than 1 billion, and have become indispensable in modern communications technology. Even though space-charge electrets are widely used in transducer applications, relatively little was known about the microscopic mechanisms of charge storage. It was generally accepted that the surplus charges are stored in some form of physical or chemical traps. However, trap depths of less than 2 eV, obtained via thermally stimulated discharge experiments, conflicted with the observed lifetimes (extrapolations of experimental data yielded more than 100 000 years). Using a combination of photostimulated discharge spectroscopy and simultaneous depth-profiling of the space-charge density, the present work shows for the first time that at least part of the space charge in, e. g., polytetrafluoroethylene, polypropylene and polyethylene terephthalate is stored in traps with depths of up to 6 eV, indicating major local structural changes.