Introduction to the Geometry of the Triangle

Introduction to the Geometry of the Triangle

Introduction to the Geometry of the Triangle Paul Yiu Summer 2004 Department of Mathematics Florida Atlantic University Version 4.0510 May 2004 Contents 1 The Circumcircle and the Incircle 1 1.1 Preliminaries ................................. 1 1.1.1 Coordinatization of points on a line . ............ 1 1.1.2 Centers of similitude of two circles . ............ 2 1.1.3 Tangent circles . .......................... 2 1.1.4 Harmonic division .......................... 2 1.1.5 Homothety . .......................... 4 1.1.6 The power of a point with respect to a circle . ............ 4 1.2 Menelaus and Ceva theorems . ................... 6 1.2.1 Menelaus and Ceva Theorems . ................... 6 1.2.2 Desargues Theorem . ................... 7 1.3 The circumcircle and the incircle of a triangle . ............ 8 1.3.1 The circumcircle . .......................... 8 1.3.2 The incircle and the Gergonne point . ............ 8 1.3.3 The Heron formula .......................... 10 1.3.4 The excircles and the Nagel point . ............ 12 1.4 The medial and antimedial triangles . ................... 14 1.4.1 The medial triangle, the nine-point center, and the Spieker point . 14 1.4.2 The antimedial triangle and the orthocenter . ............ 14 1.4.3 The Euler line . .......................... 15 1.5 The nine-point circle . .......................... 17 1.5.1 The Euler triangle as a midway triangle . ............ 17 1.5.2 The orthic triangle as a pedal triangle . ............ 17 1.5.3 The nine-point circle . ................... 17 1.5.4 The orthic triangle .......................... 19 1.6 The OI-line ................................. 20 1.6.1 The centers of similitude of the circumcircle and the incircle . 20 1.6.2 Reflection of I in O ......................... 20 1.6.3 Orthocenter of intouch triangle . ................... 21 1.6.4 Centroid of excentral triangle . ................... 21 1.6.5 Homothetic center of excentral and intouch triangle . ........ 22 2 Homogeneous Barycentric Coordinates 27 2.1 Barycentric coordinates with reference to a triangle ............ 27 2.1.1 Homogeneous barycentric coordinates . ............ 27 iv CONTENTS 2.1.2 The area formula . ........................ 31 2.2 Equations of Straight lines . ........................ 32 2.2.1 Two-point form . ........................ 32 2.2.2 Intercept form: trilinear pole and polar . ............. 32 2.2.3 Intersection of two lines . ................. 33 2.3 Cevian and anticevian triangles . ................. 35 2.3.1 Cevian triangle . ........................ 35 2.3.2 Anticevian triangle . ........................ 36 2.3.3 Construction of anticevian triangle . ................. 37 2.4 Perspectivity . ............................... 39 2.4.1 Triangles bounded by lines parallel to the sidelines . ...... 39 2.4.2 Perspector and perspectrix . ................. 40 2.4.3 Cevian nest theorem . ........................ 40 2.5 Conway’s formula . ........................ 42 2.5.1 Conways’s Notation . ........................ 42 2.5.2 Jacobi’s Theorem . ........................ 44 2.5.3 Isosceles triangles erected on the sides and Kiepert perspectors . 44 3 Some Basic Constructions 49 3.1 Isotomic conjugates . ........................ 49 3.1.1 The isotomic conjugate of the orthocenter . ............. 49 3.1.2 Equal-parallelians point . ................. 50 3.1.3 Appendix: Yff’s analogue of the Brocard points . ...... 52 3.2 Reflections and isogonal conjugates . ................. 53 3.2.1 Examples of isogonal conjugates . ................. 53 3.3 Examples of isogonal conjugates . ................. 56 3.3.1 Isogonal conjugates of the Gergonne and Nagel points . ...... 56 3.3.2 The Brocard points . ........................ 57 3.3.3 Isogonal conjugates of the Kiepert perspectors . ...... 58 3.4 Barycentric product . ........................ 59 3.4.1 Examples ............................... 59 3.4.2 Barycentric square root ........................ 60 3.5 Cevian quotient ............................... 63 3.5.1 Examples ............................... 63 3.6 The Brocardians ............................... 64 4 Straight Lines 65 4.1 Parametrization of a line . ........................ 65 4.2 Infinite points and parallel lines . ................. 65 4.2.1 The infinite point of a line . ................. 65 4.2.2 Parallel lines . ........................ 66 4.3 Perpendicular lines . ........................ 68 4.3.1 The Orthopole of a line ........................ 69 4.3.2 2 . ............................... 69 4.4 The distance formula . ........................ 71 CONTENTS v 4.5 The pedal and reflection of a point on a line . ............ 73 4.6 Pedal triangles . .......................... 74 4.6.1 Pedal triangle . .......................... 74 4.6.2 Examples . .......................... 74 4.6.3 Pedal residuals . .......................... 75 4.6.4 Centroid of pedal triangle . ................... 76 4.7 Reflection triangles . .......................... 78 4.8 Antipedal triangles . .......................... 79 4.9 Appendices ................................. 80 4.9.1 The excentral triangle . ................... 80 4.9.2 Perspectors associated with inscribed squares ............ 80 5 Circles 83 5.1 Isogonal conjugates of infinite points and the circumcircle . ........ 83 5.1.1 Equation of the circumcircle . ................... 83 5.1.2 A parametrization of the circumcircle . ............ 83 5.1.3 Antipodal points on the circumcircle . ............ 84 5.2 Circumcevian triangle . .......................... 85 5.3 Simson lines ................................. 86 5.3.1 Simson lines of antipodal points ................... 87 5.4 Equation of circles . .......................... 88 5.4.1 Equation of a general circle . ................... 88 5.4.2 Equation of the nine-point circle................... 88 5.4.3 The power of a point with respect to a circle . ............ 89 5.4.4 The incircle and the excircles . ................... 89 5.5 The Feuerbach theorem . .......................... 91 5.5.1 Intersection of the incircle and the nine-point circle . ........ 91 5.5.2 Condition for tangency of a line and the incircle . ........ 91 6 Special Circles 93 6.1 General circle equations . .......................... 93 6.1.1 Circle with given center and radius . ............ 93 6.1.2 Circle with a given diameter . ................... 93 6.1.3 The power of a point with respect to a circle . ............ 94 6.2 The Taylor circle . .......................... 95 6.3 The Dou circle . .......................... 96 6.3.1 August 17, 2002: Edward Brisse ................... 97 6.4 The Brocard points . .......................... 98 7 Triads of Circles 101 7.1 The excircles .................................101 7.2 Appendix: Miquel Theory ..........................103 7.2.1 Miquel Theorem . ..........................103 7.2.2 Miquel associate . ..........................103 7.2.3 Cevian circumcircle . ...................104 vi CONTENTS 7.2.4 Cyclocevian conjugate ........................104 7.3 Appendix: The circle triad (A(a),B(b),C(c)) ...............107 7.3.1 The Steiner point . ........................108 7.4 Radical circle of a triad of circles . .................109 7.4.1 Radical center . ........................109 7.4.2 Radical circle . ........................109 7.4.3 The excircles . ........................110 7.4.4 The de Longchamps circle . .................110 7.5 2 .......................................112 7.6 Appendix: More triads of circles . .................113 7.6.1 The triad {A(AH )} ..........................113 7.7 The triad of circles (AG(AH ),BG(BH ),CG(CH )) .............116 9 Circumconics 117 9.1 Circumconics as isogonal transforms of lines . .............117 9.2 The perspector and center of a circumconic .................120 9.2.1 Examples ...............................120 9.3 The infinite points and asymptotes of a circum-hyperbola . ......122 9.3.1 Stother’s Theorem . ........................122 10 General Conics 123 10.1 Equation of conics . ........................123 10.1.1 Conic through the traces of P and Q .................123 10.2 Inscribed conics ...............................125 10.2.1 The Steiner in-ellipse . ........................125 10.3 The matrix of a conic . ........................126 10.3.1 Line coordinates . ........................126 10.3.2 The matrix of a conic . ........................126 10.3.3 Tangent at a point . ........................126 10.4 The dual conic . ...............................127 10.4.1 Pole and polar . ........................127 10.4.2 Condition for a line to be tangent to a conic .............127 10.4.3 The dual conic . ........................127 10.4.4 The dual conic of a circumconic . .................127 10.4.5 Appendix: The adjoint of a matrix . .................128 10.5 The type, center and perspector of a conic .................130 10.5.1 The type of a conic . ........................130 10.5.2 The center of a conic . ........................130 10.5.3 The perspector of a conic . .................130 10.6 Conics parametrized by quadratic functions .................132 10.6.1 Locus of Kiepert perspectors . .................132 10.6.2 . ...............................133 CONTENTS vii 11 Some Special Conics 135 11.1 Inscribed conic with prescribed foci . ...................135 11.1.1 Theorem . ..........................135 11.1.2 The Brocard ellipse ..........................135 11.1.3 2 . .................................136 11.1.4 The Lemoine ellipse . ...................136 11.1.5 The inscribed conic with center N ..................137

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    170 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us