Modern Methods of Quantum Chromodynamics

Modern Methods of Quantum Chromodynamics

Modern Methods of Quantum Chromodynamics Christian Schwinn Albert-Ludwigs-Universit¨atFreiburg, Physikalisches Institut D-79104 Freiburg, Germany Winter-Semester 2014/15 Draft: March 30, 2015 http://www.tep.physik.uni-freiburg.de/lectures/QCD-WS-14 2 Contents 1 Introduction 9 Hadrons and quarks . .9 QFT and QED . .9 QCD: theory of quarks and gluons . .9 QCD and LHC physics . 10 Multi-parton scattering amplitudes . 10 NLO calculations . 11 Remarks on the lecture . 11 I Parton Model and QCD 13 2 Quarks and colour 15 2.1 Hadrons and quarks . 15 Hadrons and the strong interactions . 15 Quark Model . 15 2.2 Parton Model . 16 Deep inelastic scattering . 16 Parton distribution functions . 18 2.3 Colour degree of freedom . 19 Postulate of colour quantum number . 19 Colour-SU(3).............................. 20 Confinement . 20 Evidence of colour: e+e− ! hadrons . 21 2.4 Towards QCD . 22 3 Basics of QFT and QED 25 3.1 Quantum numbers of relativistic particles . 25 3.1.1 Poincar´egroup . 26 3.1.2 Relativistic one-particle states . 27 3.2 Quantum fields . 32 3.2.1 Scalar fields . 32 3.2.2 Spinor fields . 32 3 4 CONTENTS Dirac spinors . 33 Massless spin one-half particles . 34 Spinor products . 35 Quantization . 35 3.2.3 Massless vector bosons . 35 Polarization vectors and gauge invariance . 36 3.3 QED . 37 3.4 Feynman rules . 39 3.4.1 S-matrix and Cross section . 39 S-matrix . 39 Poincar´einvariance of the S-matrix . 40 T -matrix and scattering amplitude . 41 Unitarity of the S-matrix . 41 Cross section . 42 3.4.2 Perturbation theory and Feynman rules . 42 Feynman rules . 43 3.4.3 Feynman rules in QED . 44 3.4.4 Feynman rules for interactions with momenta . 45 3.5 Calculation of cross sections . 46 3.5.1 Example: e−e+ ! µ−µ+ ........................ 46 3.5.2 Remarks on the calculation of scattering amplitudes . 48 Crossing: e−µ ! e−µ .......................... 48 External photons and gauge invariance . 49 Remarks on calculations for many-particle final states . 50 4 Introduction to QCD 51 4.1 SU(3) ...................................... 52 4.1.1 Generators and Lie Algebra . 52 Lie Groups and generators . 52 Gell-Mann matrices . 53 Lie Algebras . 53 4.1.2 Representations . 54 Fundamental representations . 54 Combining representations . 55 Representations of Lie algebras . 57 Conjugate representation . 57 Adjoint representation . 57 Generators of product representations . 58 4.2 QCD as non-abelian gauge theory . 58 4.2.1 Non-abelian gauge invariance . 58 Covariant derivative . 58 Field-strength tensor . 59 Decomposition of gluon fields . 59 CONTENTS 5 Infinitesimal transformations . 60 4.2.2 QCD Lagrangian . 60 4.2.3 Gauge fixing . 61 4.3 Feynman rules . 62 4.4 Evaluation of colour factors . 64 Casimir operators . 64 Colour Fierz identity . 66 4.5 Examples . 66 4.5.1 Quark-antiquark potential . 66 4.5.2 qq¯ ! gg: Gauge invariance and ghosts . 68 Ward identity . 69 Relation to ghost diagrams . 70 5 Applications of the Parton model 73 5.1 e−e+ ! Hadrons . 74 5.1.1 Electromagnetic quark current . 74 5.1.2 Total cross section . 74 5.2 DIS . 77 DIS cross section in the naive parton model . 77 Field-theoretic treatment . 79 Derivation of the cross section . 80 5.3 The Drell-Yan process . 81 5.4 Dijet cross sections . 83 5.4.1 Four-quark processes . 84 II Multi-leg Born amplitudes 87 6 Spinor-helicity methods 89 6.1 Two-component spinors . 89 6.1.1 Weyl Spinors . 89 Lorentz Transformations . 89 6.1.2 Index notation . 90 Raising and lowering indices . 90 Spinor products . 91 Explicit expressions . 91 Conjugate spinors . 92 Dirac spinors . 92 Schouten Identity . 93 Braket notation . 93 6.2 Momenta and spinors . 93 6.2.1 Pauli matrices . 93 Raising and lowering indices . 94 6 CONTENTS Dirac algebra . 94 Fierz identities . 94 6.2.2 Four-momenta . 95 Factorization of momenta into spinors . 95 Constructing momenta from spinors . 95 Scaling . 96 6.2.3 Gluon polarization vectors . 96 6.2.4 Rules for calculations with Weyl spinors . 97 Properties of spinor products . 97 Momentum conservation . 97 External states . 98 6.3 Examples . 98 6.3.1 e−e+ ! qq¯ ................................ 99 6.3.2 e−e+ ! qqg¯ ............................... 100 7 Colour decomposition 103 7.1 Examples . 104 7.1.1 qq¯ ! gg ................................. 104 7.1.2 gg ! gg ................................. 105 7.2 Colour ordered Feynman rules . 106 7.2.1 Colour ordered vertices . 106 Three gluon vertex . 106 Four gluon vertex . 106 7.2.2 Colour ordered multi-gluon amplitudes . 106 8 Born amplitudes 109 8.1 General considerations . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    164 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us