Dynamics of Saturn's Small Moons in Coupled First Order Planar Resonances

Dynamics of Saturn's Small Moons in Coupled First Order Planar Resonances

Dynamics of Saturn's small moons in coupled first order planar resonances Maryame El Moutamid Bruno Sicardy and St´efanRenner LESIA/IMCCE | Paris Observatory 26 juin 2012 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Saturn system Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Very small moons Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk New satellites : Anthe, Methone and Aegaeon (Cooper et al., 2008 ; Hedman et al., 2009, 2010 ; Porco et al., 2005) Very small (0.5 km to 2 km) Vicinity of the Mimas orbit (outside and inside) The aims of the work A better understanding : - of the dynamics of this population of news satellites - of the scenario of capture into mean motion resonances Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Dynamical structure of the system µ µ´ Mp We consider only : - The resonant terms - The secular terms causing the precessions of the orbit When µ ! 0 ) The symmetry is broken ) different kinds of resonances : - Lindblad Resonance - Corotation Resonance D'Alembert rules : 0 0 c = (m + 1)λ − mλ − $ 0 L = (m + 1)λ − mλ − $ Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation Resonance - Aegaeon (7/6) : c = 7λMimas − 6λAegaeon − $Mimas - Methone (14/15) : c = 15λMethone − 14λMimas − $Mimas - Anthe (10/11) : c = 11λAnthe − 10λMimas − $Mimas Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation resonances Mean motion resonance : n1 = m+q n2 m Particular case : Lagrangian Equilibrium Points Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Adam's ring and Galatea Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation resonances : Pendular motion 8 χ_ = − sin( ) 8 χ = 3 m a−ac < c c c < c 2 a where : : _ : = 3m2 Ms a Ee c = χc c Mp ac s 3 2 1 c J 0 -1 -2 -3 -200 -150 -100 -50 0 50 100 150 200 sc (deg) Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Lindblad Resonance 8 h_ = + @H = −(J − J + D)k < @k C L (1) : _ @H k = − @h = +(JC − JL + D)h + "L 8 < h / e cos( L) e=(h,k) : the vector eccentricity : k / e sin( L) e2 JL / 2 2 HAnd = JL − (Jc + D)JL − "Lh Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Dynamical study Equations of motions ) The Coralin (CORotation And LINdblad) Model 0 0 c = (m + 1)λ − mλ − $ near _c = 0 0 L = (m + 1)λ − mλ − $ near _L = 0 The coupling leads to a chaotic motion Asymptotic cases General solutions based on adiabatic invariance arguments Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Hamiltonian formalism : The Coralin Model 8 @H J_c = − = − sin( c ) > @ c > > > @H > _c = + = JC − [JL] <> @Jc (2) > h_ = + @H = −([J ] − J + D)k > @k C L > > :> _ @H k = − @h = +([JC ] − JL + D)h + "L where the Hamiltonian H is given by : p 1 2 H(Jc ; C ; JL; L) = 2 (Jc − JL) − DJL − cos( C ) − "L 3jmje cos( L) where : 8 < h / e cos( L) e=(h,k) : the vector eccentricity : k / e sin( L) e2 JL / 2 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk To simplify 3 Jc-JL 2 1 2 -D 0 sc -1 -2 -3 -4 -3 -2 -1 0 1 2 3 4 This study depends essentially of D which gives the distance between the two resonances, and the forcing value "L for a given value of the width of CER. D "L Anthe 0.256 -0.133 Aegaeon -1.34 0.132 Methone 0.122 -0.115 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Case Anthe Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Probability of capturing into the Corotation Eccentric Resonance (CER) - add migration in the CoraLin model to estimate the capture probabilities into CER perturbed by LER Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Hamiltonian formalism with migration 8 J_ = − sin( ) +_a=2a > c c > > > _ <> c = JC − JL = χ (3) > _ > h = −(JC − JL + D)k > > > : k_ = +(JC − JL + D)h + "L Tav =a _=2a = α + βχ Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk constant torque : No capture Tav = α 80 60 40 20 c J 0 -20 -40 -60 -80 -200 -150 -100 -50 0 50 100 150 200 sc (deg) Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk torque with gradient : possible capture Tav = α + βχ 80 60 40 20 c J 0 -20 -40 -60 -200 -150 -100 -50 0 50 100 150 200 sc (deg) Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Torque with gradient Tav = α + βχ 50 0.005 40 0.0045 30 0.004 20 0.0035 10 0.003 0 0.0025 -10 Eccentricity 0.002 Semi-major axis -20 0.0015 -30 -40 0.001 -50 0.0005 -60 0 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06 Time (days) Time (days) a = 197655.4 km e = 0.003 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Case Anthe Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Case Anthe Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Conclusions and prospects - CoraLin : simple model to investigate the dynamics of a satellite on CER/LER - Capture probabilities into CER + applications to our satellites - Anthe crosses a chaotic region favors the capture - The capture is sure in the second scenario - For Aegaeon : need a migration in the other direction. Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us