Standard Combinational Modules

Standard Combinational Modules

1 STANDARD COMBINATIONAL MODULES • DECODERS • ENCODERS • MULTIPLEXERS (Selectors) • DEMULTIPLEXERS (Distributors) • SHIFTERS Introduction to Digital Systems 9 { Standard Combinational Modules 2 BINARY DECODERS HIGH-LEVEL DESCRIPTION: Inputs: x = (xn−1; : : : ; x0); xj 2 f0; 1g Enable E 2 f0; 1g Outputs: y = (y2n−1; : : : ; y0); yi 2 f0; 1g 8 1 if (x = i) and (E = 1) > Function: yi = <> otherwise > 0 :> n−1 j x = X xj2 j=0 and i = 0; : : : ; 2n − 1 Introduction to Digital Systems 9 { Standard Combinational Modules 3 E y En 0 0 y 1 1 y x 2 0 0 2 x 1 1 Inputs Outputs x n-1 n-1 n-Input Binary Decoder y n n 2 -1 2 -1 Figure 9.1: n-INPUT BINARY DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 4 EXAMPLE 9.1: 3-INPUT BINARY DECODER E x2 x1 x0 x y7 y6 y5 y4 y3 y2 y1 y0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 0 0 0 1 0 0 1 0 1 1 3 0 0 0 0 1 0 0 0 1 1 0 0 4 0 0 0 1 0 0 0 0 1 1 0 1 5 0 0 1 0 0 0 0 0 1 1 1 0 6 0 1 0 0 0 0 0 0 1 1 1 1 7 1 0 0 0 0 0 0 0 0 - - - - 0 0 0 0 0 0 0 0 BINARY SPECIFICATION: Inputs: x = (xn−1; : : : ; x0); xj 2 f0; 1g E 2 f0; 1g Outputs: y = (y2n−1; : : : ; y0); yi 2 f0; 1g n Function: yi = E · mi(x) ; i = 0; : : : ; 2 − 1 Introduction to Digital Systems 9 { Standard Combinational Modules 5 EXAMPLE 9.2: IMPLEMENTATION OF 2-INPUT DECODER 0 0 0 0 y0 = x1x0E y1 = x1x0E y2 = x1x0E y3 = x1x0E E y 0 x y 0 1 y x 2 1 y 3 Figure 9.2: GATE NETWORK IMPLEMENTATION OF 2-INPUT BINARY DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 6 DECODER USES OPCODE field Instruction Other fields 4-Input Binary E=1 En Decoder 15 . 4 3 2 1 0 LOAD STORE ADD Decoded operations JUMP Figure 9.3: OPERATION DECODING. Introduction to Digital Systems 9 { Standard Combinational Modules 7 DECODER USES Cell referenced when address is Data input Data input 00000000000010 Binary cell E=1 0 1 Address 14 14 2 RAM Module Address 14 (2 x 1) 16383 Binary Decoder Read/write Read/write Data output (a) (b) Data output Figure 9.4: RANDOM ACCESS MEMORY (RAM): a) MODULE; b) ADDRESSING OF BINARY CELLS. Introduction to Digital Systems 9 { Standard Combinational Modules 8 BINARY DECODER AND or GATE • UNIVERSAL Example 9.5: x2x1x0 z2 z1 z0 000 0 1 0 001 1 0 0 010 0 0 1 011 0 1 0 100 0 0 1 101 1 0 1 110 0 0 0 111 1 0 0 Introduction to Digital Systems 9 { Standard Combinational Modules 9 (y7; : : : ; y0) = dec(x2; x1; x0; 1) z2(x2; x1; x0) = y1 y5 y7 z1(x2; x1; x0) = y0 y3 z0(x2; x1; x0) = y2 y4 y5 E=1 y 0 En 0 y 1 1 y z 2 2 2 x 0 y 0 3 3 x y z 1 1 4 1 4 x 2 y 2 5 Binary Decoder 5 y z 6 0 6 y 7 7 Figure 9.5: NETWORK IN EXAMPLE 9.5 Introduction to Digital Systems 9 { Standard Combinational Modules 10 DECODER NETWORKS: COINCIDENT DECODING x = (xleft; xright) xleft = (x7; x6; x5; x4) xright = (x3; x2; x1; x0) 4 x = 2 × xleft + xright y = DEC(xleft) w = DEC(xright) zi = AND(ys; wt) i = 24 × s + t Introduction to Digital Systems 9 { Standard Combinational Modules 11 x3 x2 x1 x0 0 1 0 0 4-Input Binary 1 En Decoder 15 . .4 3 2 1 0 w 4 1 z0 x4 0 1 y x5 2 0 1 x6 Decoder 0 z36 x7 4-Input Binary En 15 . 2 1 0 1 E z255 Figure 9.6: 8-INPUT COINCIDENT DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 12 n-INPUT COINCIDENT DECODER y = dec(xleft; E) w = dec(xright; 1) and and and z = ( (y2n=2−1; w2n=2−1); : : : ; (ys; wt); : : : ; (y0; w0)) Introduction to Digital Systems 9 { Standard Combinational Modules 13 x n/2-1 x0 1 En DECODER W w n/2 w 2 -1 0 wt z0 y0 xn/2 ys x n-1 DECODER Y En z n/2 y n/2 2 s+t 2 -1 E z n 2 - 1 Figure 9.7: n-INPUT COINCIDENT DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 14 TREE DECODING x = (xleft; xright) xleft = (x3; x2) xright = (x1; x0) Introduction to Digital Systems 9 { Standard Combinational Modules 15 4-INPUT TREE DECODER x x x3 x2 1 0 x=6: 0 1 1 0 1 0 Level 1 E En DEC 3 2 1 0 0 0 1 0 1 0 En 1 0 En 1 0 En 1 0 En Level 2 DEC 3 DEC 2 DEC 1 DEC 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 z z z z 15 12 8 z6 =1 z4 0 Figure 9.8: 4-INPUT TREE DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 16 n-INPUT TREE DECODERr w = dec(xleft; E) dec dec dec z = ( (xright; w2n=2−1); : : : ; (xright; wt); : : : ; (xright; w0)) Introduction to Digital Systems 9 { Standard Combinational Modules 17 x x left right x n-1 xn/2 x n/2-1 x0 E En Level 1 DEC w n/2 2 - 1 w0 wt En En En n/2 Level 2 DEC 2 -1 DEC t DEC 0 z n z (n/2) z 2 - 1 2 t+s 0 Figure 9.9: n-INPUT TWO-LEVEL TREE DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 18 COMPARISON OF DECODER NETWORKS Coincident Tree Decoder modules 2 2k + 1 and gates 22k { Load per network input 1 decoder input 2k decoder inputs (max) Fanout per decoder output 2k and inputs 1 enable input Number of module inputs 2k + 2 + 22k+1 1 + k + 2k + k2k (related to number of connections) Delay tdecoder + tAND 2tdecoder Introduction to Digital Systems 9 { Standard Combinational Modules 19 EXAMPLE 9.6: 6-INPUT DECODER E x 0 0 z0 x 1 1 z x0 0 0 x z z 2 1 x 1 1 Decoder 7 1 E x 2 z Decoder 7 7 0 x3 1 1 x4 x5 Decoder 7 x3 0 1 0 z56 x4 1 z57 x5 z63 Decoder 7 Decoder 7 z63 (a) (b) Figure 9.10: IMPLEMENTATION OF 6-INPUT DECODER. a) COINCIDENT DECODER. b) TREE DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 20 EXAMPLE 9.6 (cont.) Coincident Tree Decoder modules 2 9 and gates 64 { Load per network input 1 decoder input 8 decoder inputs (max) Fanout per decoder output 8 and inputs 1 enable input Number of module inputs 136 36 Delay 3d 4d Introduction to Digital Systems 9 { Standard Combinational Modules 21 Decoder Cell array Data input Binary cell E=1 0 0 1 1 12 2 2 Address Tree Decoder 4095 4096 lines from decoder to cell array 4095 Read/write Data output (a) Figure 9.11: a) SYSTEM WITH TREE DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 22 Decoder E=1 Cell array Data input 0 6 0 Binary Decoder 63 1 12 Address E=1 0 6 Binary Decoder 63 4095 Read/write 128 lines from decoder Modified binary cell Data output to cell array equivalent to coincident decoder (b) Figure 9.11: b) SYSTEM WITH COINCIDENT DECODER. Introduction to Digital Systems 9 { Standard Combinational Modules 23 BINARY ENCODERS E En x 0 0 x y 1 1 0 0 y 1 1 Inputs y n-1 Outputs n-1 -Input Binary Encoder n 2 x n n 2 -1 2 -1 Ac A Figure 9.12: 2n-INPUT BINARY ENCODER. Introduction to Digital Systems 9 { Standard Combinational Modules 24 BINARY ENCODER: HIGH-LEVEL SPECIFICATION Inputs: x = (x2n−1; : : : ; x0); xi 2 f0; 1g, with at most one xi = 1 E 2 f0; 1g Outputs: y = (yn−1; : : : ; y0); yj 2 f0; 1g A 2 f0; 1g 8 i if (x = 1) and (E = 1) > i Function: y = <> otherwise > 0 :> 8 1 if (some x = 1) and (E = 1) > i A = <> otherwise > 0 :> n−1 j y = X yj2 j=0 and i = 0; : : : ; 2n − 1 Introduction to Digital Systems 9 { Standard Combinational Modules 25 EXAMPLE 9.7: FUNCTION OF AN 8-INPUT BINARY ENCODER E x7 x6 x5 x4 x3 x2 x1 x0 y y2 y1 y0 A 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 2 0 1 0 1 1 0 0 0 0 1 0 0 0 3 0 1 1 1 1 0 0 0 1 0 0 0 0 4 1 0 0 1 1 0 0 1 0 0 0 0 0 5 1 0 1 1 1 0 1 0 0 0 0 0 0 6 1 1 0 1 1 1 0 0 0 0 0 0 0 7 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - 0 0 0 0 0 Introduction to Digital Systems 9 { Standard Combinational Modules 26 BINARY SPECIFICATION OF ENCODER Inputs: x = (x2n−1; : : : ; x0); xi 2 f0; 1g, with at most one xi = 1 E 2 f0; 1g Outputs: y = (yn−1; : : : ; y0); yj 2 f0; 1g A 2 f0; 1g Function: yj = E · P(xk); j = 0; : : : ; n − 1 n A = E · P(xi); i = 0; : : : ; 2 − 1 Introduction to Digital Systems 9 { Standard Combinational Modules 27 EXAMPLE 9.8 y0 = E · (x1 x3 x5 x7) y1 = E · (x2 x3 x6 x7) y2 = E · (x4 x5 x6 x7) A = E · (x0 x1 x2 x3 x4 x5 x6 x7) Introduction to Digital Systems 9 { Standard Combinational Modules 28 x x x x x x x x 7 6 5 4 3 2 1 0 E y0 y1 y2 A Figure 9.13: IMPLEMENTATION OF AN 8-INPUT BINARY ENCODER.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    62 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us