Some Thermodynamic and Quantum Aspects of NMR Signal Detection Stanislav Sýkora URL of This Document: DOI: 10.3247/Sl4nmr11.002

Some Thermodynamic and Quantum Aspects of NMR Signal Detection Stanislav Sýkora URL of This Document: DOI: 10.3247/Sl4nmr11.002

Some Thermodynamic and Quantum Aspects of NMR Signal Detection Stanislav Sýkora URL of this document: www.ebyte.it/stan/Talk_BFF6_2011.html DOI: 10.3247/SL4nmr11.002 Presented at 6th BFF on Magnetic Resonance Microsystem , Saig/Titisee (Freiburg), Germany, 26-29 July 2011 Controversies about the nature of NMR signal and its most common modes of detection There is a growing body of literature showing that the foundations of Magnetic Resonance are not as well understood as they should be Principle articles: Bloch F., Nuclear Induction , Phys.Rev. 70, 460-474 (1946). Dicke R.H., Coherence in Spontaneous Radiation Processes , Phys.Rev. 93, 99-110 (1954). Hoult D.I., Bhakar B., NMR signal reception: Virtual photons and coherent spontaneous emission , Concepts Magn. Reson. 9, 277-297 (1997). Hoult D.I., Ginsberg N.S., The quantum origins of the free induction decay and spin noise , J.Magn.Reson. 148, 182-199 (2001). Jeener J., Henin F., A presentation of pulsed nuclear magnetic resonance with full quantization of the radio frequency magnetic field , J.Chem.Phys. 116, 8036-8047 (2002). Hoult D.I., The origins and present status of the radio wave controversy in NMR , Concepts in Magn.Reson. 34A, 193-216 (2009). Stan Sykora 6th BFF 2011, Freiburg, Germany Controversies about the nature of NMR signal and its most common modes of detection This author’s presentations: Magnetic Resonance in Astronomy: Feasibility Considerations , XXXVI GIDRM, 2006. Perpectives of Passive and Active Magnetic Resonance in Astronomy, 22nd NMR Valtice 2007. Spin Radiation, remote MR Spectroscopy, and MR Astronomy , 50th ENC, 2009. Signal Detection: Virtual photons and coherent spontaneous emission , 18th ISMRM, 2010. The Many Walks of Magnetic Resonance: Past, Present and Beyond, Uni Cantabria, Santander, 2010. Do we really understand Magnetic Resonance? , MMCE, 2011. Slides and more info: see www.ebyte.it/stan/SS_Lectures.html Stan Sykora 6th BFF 2011, Freiburg, Germany Questions, questions, questions … for which there should exist simple answers, but … do they? (we have no time for these points now, but I have a handout and we can discuss them during the meeting) 1) Why do we use different explanations for different aspects of MR ? 2) Which aspects of MR are undeniably quantum and cannot be described classically ? 3) Are Bloch equations classical? Is it sensible to try derive them from quantum theory ? 4) Is electromagnetic radiation involved in magnetic resonance? If so, is it true or virtual ? 5) Does spontaneous emission from spin systems occur? If so, what are its properties ? 6) Is MR a near or a far phenomenon? Is remote excitation and/or detection possible ? 7) Can an FID be described as coherent spontaneous emission ? What about CW-NMR ? 8) How do the spins interact with nearby conductors, and with the coil ? 9) Which phenomena can be described considering an isolated spin, and which can’t ? a) What is the role of relaxation processes in all this? Are they essential or marginal ? b) What is the role of time-averaged Hamiltonians in magnetic resonance ? c) Can an FID be described as a sum of individual quantum transitions ? d) Does all this uncover some gaping holes in quantum physics ? e) Does all this tell us something about the ontology of photons ? f) Can MR throw new light on basic aspects of physics ? Stan Sykora 6th BFF 2011, Freiburg, Germany We use different descriptions for different MR phenomena ! Q < 10 4 11 B 3/2 Q = ω/∆ω ≈ 10 1 M 1/2 ⊥⊥⊥ Z' ≡≡≡Z 1/2 ωn 0 -1/2 M|| M(0) -1/2 -1 M α M(t) -3/2 Y' B1 X' CLASSICAL HYBRID QUANTUM Induction law, Thermal equilibrium Coupled spins spectroscopy, Bloch equations, Theory of CW-MR Spin systems dynamics, Reciprocity theorem, Quantum coherences Hilbert/Liouville QM, Simplified MRI, Operator products Density matrix,… Stan Sykora MMCE 2011, Tatranska Lomnica, Slovakia The principle difficulty: How to reconcile the manifestly quantum aspects of MR phenomena with the totally classical nature of the detection/excitation devices Possible ways to tackle the problem A. Rely on paradigms shared by both classical and quantum physics Thermodynamics, Conservation Laws and (some) Statistical Physics A problem: the approach provides good insights but remains incomplete B. Approximate quantum spin systems in a classical way A problem: arisal of a transversal magnetization from parallel spin eigenstates C. Provide a quantum description of the detection/excitation devices A problem: apparent complexity and necessity to conform to classical results An extra task: how to couple the spin system to the detection/excitation device Stan Sykora 6th BFF 2011, Freiburg, Germany The two parts of this talk: A. Part I: Classical paradigms shared also by quantum physics Thermodynamics, Conservation Laws and (some) Statistical Physics B. Approximate quantum spin systems in a classical way A problem: everybody does this since 50 years, therefore I don’t dig it C. Part II: Quantum description of the detection/excitation devices An extra task: coupling the spin system to the detection/excitation device Stan Sykora 6th BFF 2011, Freiburg, Germany Let us forget quantum physics for a while ☺☺☺ and remember just the conservation of energy (the first law of thermodynamics) The physical system we will consider: L Loop and its Inductance R Resistance (may be distributed) J Electric current P just a Point B Magnetic Field m Magnetic Dipole B H = µ = µβ Jτττβ , where µ is the permaebility, β a constant, and τττβ a unit vector. β and τττβ depend only on the system’s geometry. m m = m τττm , where τττm is a unit vector along Stan Sykora 6th BFF 2011, Freiburg, Germany Setting up a master equation Energy terms: 2 Inductive: EL = LJ /2 2 Self-energy of m: Em = km /2 m B Interaction: Ei = - . = -κmJ , where κ = µβ (τττβ.τττm) Dissipation: dE/dt = -J2R Since R is the only dissipative element in the circuit, the energy conservation law dictates 2 dE/dt = dE L/dt + dE i/dt + dE m/dt = -J R Hence, using the apostrophe to denote time derivatives, (LJ -γm)J' - κm'J + RJ 2 +kmm' = 0 Stan Sykora 6th BFF 2011, Freiburg, Germany … a couple of useful notes … Energy terms: 2 Inductive: EL = LJ /2 2 Self-energy of m: Em = km /2 m B Interaction: Ei = - . = -γmJ , where κ = µβ (τττβ.τττm) Dissipation: dE/dt = -J2R 2 2 2 2 † Since EL = LJ /2 and also EL = ∫∫∫V|B| dτ/2 µ = µJ ∫∫∫V β dτ/2 , 2 2 we have L = µ∫∫∫V β dτ = µ<β > V showing that, upon scaling, β correlates with L1/2 The old terms coil volume and filling factor arise from here † While β is positive by definition, κ = µβ (τττβ.τττm) can be both positive or negative Stan Sykora 6th BFF 2011, Freiburg, Germany (A,B) Special cases of the master equation (LJ -γm)J' - κm'J + RJ 2 +kmm' = 0 A. When there is no magnetic dipole (m = m' = 0 ), we get 2 - (R/L) t LJJ' + RJ = 0 ⇒ LJ' + RJ = 0 ⇒ J = J 0 e This is the well-known equation of the LR-circuit . B. The term kmm' is the power needed to maintain the dipole. This is null in the case of quantum particles . It drops out also when the dipole is associated with a permanent magnet or when it is driven driven by an external device. In such cases k=0 and we have a modified master equation: LJJ' - κmJ' - κm'J + J 2R = 0 Stan Sykora 6th BFF 2011, Freiburg, Germany (C) Special cases of the modified master equation LJJ' - κmJ' - κm'J + J 2R = 0 How must the dipole evolve to maintain a constant current ? J’ = 0 The answer is that m must grow linearly with time at the rate m' = JR/ κ One can reverse the point of view and say that this is as though the linearly increasing dipole generated in the circuit the emf Vemf = JR = κm' = µβ (τττβ.τττm) m' which coincides exactly with the classical law of induction . It is easy to show that this holds also when J’≠ 0, provided the induction law is properly extended ( LJ = κm = - Φ). Stan Sykora 6th BFF 2011, Freiburg, Germany (D-E) Oscillating magnetic dipoles LJJ' - κmJ' - κm'J + J 2R = 0 D. What if the dipole is made to oscillate? Let m = m 0 exp(i ωt) and assume a solution of the type J = J 0 exp[i( ωt+ ϕ)]. Then the master equation gives J0 = 2 κω m0/|R+i ωL| and tan( ϕ) = R/ ωL. E. The amplitude of the detected current (signal) is proportional to κ and therefore also to β. Since β describes the efficiency B/J of a current J to generate the field B at point P, this proves the reciprocity theorem : The larger is the field B generated at a point P by a current J in the loop, the stronger is the detected signal due to an oscillating dipole located at P. Hoult D.I., The principle of reciprocity in signal strength calculations - a mathematical guide , Concepts in Magn. Reson. <b>12</b>, 173-187 (2000). Stan Sykora 6th BFF 2011, Freiburg, Germany (F) Current detection of oscillating dipoles J0 = 2 κω m0/|R+i ωL| Detected signal current J0,max = 2 κm0/L is attained for R=0 ½ NJ = [4kTB w/R] Johnson noise current -½ ½ (S/N) J = J 0/N J = ωκ m0 (kTB w) R / |R+i ωL| ½ -½ -½ (S/N) J,max = m 0 ω (2kTB w) κL is attained at R= ωL Comment: While the maximum current is obtained for infinite-Q loops (R=0 ), the best S/N ratio is attained for the “matching” condition R = ωL Stan Sykora 6th BFF 2011, Freiburg, Germany (G) Voltage detection of oscillating dipoles V0 = J 0R = 2 ωκ m0 R/|R+i ωL| Detected signal voltage V0,max = 2 ωκ m0 is attained for R= ∞ ½ NV = [4kTB wR] Johnson noise voltage -½ ½ (S/N) V = V 0 /N V = ωκ m0 (kTB w) R / |R+i ωL| ½ -½ -½ (S/N) V,max = m 0 ω (2kTB w) κL is again attained at R= ωL Comment: While the maximum voltage is obtained for open loops (R = ∞), the best S/N ratio is attained for the “matching” condition R = ωL.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    39 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us