Life: the Science of Biology

Life: the Science of Biology

<p>Lecture Notebook </p><p>to accompany </p><p></p><ul style="display: flex;"><li style="flex:1">Sinauer aSSociateS, inc. </li><li style="flex:1">MacMillan </li></ul><p></p><p>Copyright © 2014 Sinauer Associates, Inc.&nbsp;Cover photograph © Alex Mustard/naturepl.com. This document may not be modified or distributed (either electronically or on paper) without the permission of the publisher, with the following exception: Individual users may enter their own notes into this document and may print it for their own personal use. </p><p>The Origin and Diversification of Eukaryotes </p><p>0207 </p><p>27.1 A&nbsp;Hypothetical Sequence for the Evolution of the Eukaryotic Cell&nbsp;(Page 550) </p><p>Cell wall DNA </p><p>The protective cell wall was lost. </p><p>1</p><p>Infolding of the </p><p>2</p><p>plasma membrane added surface area without increasing the cell’s volume. </p><p>Cytoskeleton (microfilament and microtubules) formed. </p><p>34</p><p>Internal membranes studded with ribosomes formed. </p><p>As regions of the infolded plasma membrane enclosed the cell’s DNA, a precursor of a </p><p>5</p><p>nucleus formed. <br>Microtubules from the cytoskeleton formed the eukaryotic flagellum, enabling propulsion. </p><p>6</p><p>Early digestive vacuoles evolved into lysosomes using enzymes from the early endoplasmic reticulum. </p><p>789</p><p>Mitochondria formed through endosymbiosis with a proteobacterium. </p><p>Endosymbiosis with cyanobacteria led to the development of chloroplasts. </p><p>Flagellum </p><p>To add your own notes to any page, use Adobe Reader’s </p><p>Typewriter feature, accessible via the Typewriter bar at the top of the window. (Requires Adobe Reader 8 or later. Adobe Reader can be downloaded free of charge from the </p><p>Adobe website: <a href="/goto?url=http://get.adobe.com/reader" target="_blank">http://get.adobe.com/reade</a><a href="/goto?url=http://get.adobe.com/reader" target="_blank">r</a>.) </p><p>Chloroplast Mitochondrion </p><p>Nucleus </p><p>2</p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>3</p><p>(A) Primary&nbsp;endosymbiosis </p><p>Eukaryote <br>Cyanobacterium </p><p>Cyanobacterium outer membrane </p><p>Peptidoglycan Cyanobacterium inner membrane </p><p>Host cell nucleus <br>Chloroplast </p><p>Peptidoglycan has been lost except in glaucophytes. </p><p>Chloroplastcontaining eukaryotic cell </p><p>(B) Secondary&nbsp;endosymbiosis </p><p>Host eukaryotic cell </p><p>Host membrane (from endocytosis) encloses the engulfed cell. </p><p>A trace of the engulfed cell’s nucleus is retained in some groups. </p><p>The engulfed cell’s plasma membrane (white) has been lost in euglenids and dinoflagellates. </p><p>27.2 Endosymbiotic&nbsp;Events in the Evolution of Chloroplasts </p><p>(Page 552) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>4</p><p>Alveolates <br>Stramenopiles <br>Rhizaria Excavates Plantae Chs.&nbsp;28 and 29 <br>Amoebozoans <br>Fungi <br>Ch. 30 </p><p>Ophisthokonts </p><p>Choanoflagellates <br>Animals <br>Chs. 31–33 </p><p>Precambrian </p><p></p><ul style="display: flex;"><li style="flex:1">Paleozoic </li><li style="flex:1">Mesozoic </li></ul><p></p><p>Cenozoic </p><p>to 4.5 bya </p><ul style="display: flex;"><li style="flex:1">1.5 </li><li style="flex:1">1.4 </li><li style="flex:1">1.3 </li><li style="flex:1">1.2 </li><li style="flex:1">1.1 </li><li style="flex:1">1.0 </li><li style="flex:1">0.9 </li><li style="flex:1">0.8 </li><li style="flex:1">0.7 </li><li style="flex:1">0.6 </li><li style="flex:1">0.5 </li><li style="flex:1">0.4 </li><li style="flex:1">0.3 </li><li style="flex:1">0.2 </li><li style="flex:1">0.1 </li><li style="flex:1">0</li></ul><p>Billions of years ago </p><p>27.3 Precambrian&nbsp;Divergence of Major Eukaryote Groups&nbsp;(Page 553) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>5</p><p>Dinoflagellates Apicomplexans <br>Ciliates </p><p>Stramenopiles <br>Rhizaria </p><p>In-Text Art&nbsp;(Page 553) </p><p><em>Peridinium </em>sp. </p><p>Equatorial groove </p><p>Longitudinal groove </p><p>27.4 A&nbsp;Dinoflagellate (Page 554) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>6</p><p></p><ul style="display: flex;"><li style="flex:1">(A) <em>Paramecium </em>sp. </li><li style="flex:1">(B) <em>Didinium nasutum </em></li><li style="flex:1">(C) <em>Euplotes </em>sp. </li></ul><p></p><p>10 µm </p><p>27.5 Diversity&nbsp;among the Ciliates&nbsp;(Page 554) </p><p></p><ul style="display: flex;"><li style="flex:1">7 µm </li><li style="flex:1">25 µm </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Rows of fused cilia </li><li style="flex:1">Oral groove </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Cilia </li><li style="flex:1">Bands of cilia </li></ul><p></p><p>The macronucleus controls the cell’s activities. <br>Micronuclei function in genetic recombination. </p><p>Contractile vacuole </p><p>Alveoli <br>Cilia <br>Digestive vacuole </p><p>Oral groove </p><p>Trichocyst Fibrils <br>Anal pore <br>Pellicle <br>Alveolus </p><p>Cilium </p><p>27.6 Anatomy&nbsp;of Paramecium (Page 555) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>7</p><p>INVESTIGATINGLIFE </p><p>27.7 The&nbsp;Role of Vacuoles in Ciliate Digestion </p><p>HYPOTHESIS The digestive vacuoles of Paramecium produce an acidic environment that allows the organism to digest food particles. </p><p>Method 1. Feed Paramecium yeast cells stained with Congo red, a dye that is red at neutral or basic pH but turns green at acidic pH. <br>2. Under a light microscope, observe the formation and degradation of digestive vacuoles within the Paramecium. Note time and sequence of color (i.e., acid level) changes. </p><p>Results </p><p>1 A digestive vacuole forms around yeast cells. </p><p>2 The change in color shows that the interior vacuole has become </p><p>Stained yeast cells </p><p>acidic. </p><p>Oral groove </p><p>As products of digestion move into the cytosol, the pH increases in the vacuole (the dye becomes red again). </p><p>3</p><p>Red-stained (basic) waste material is expelled. </p><p>4</p><p>CONCLUSION Some ciliates acidify digestive vacuoles to assist in the breakdown of food. </p><p>Go to BioPortal for discussion and relevant links for all </p><p>INVESTIGATINGLIFE figures. </p><p>(Page 555) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>8</p><p>Alveolates </p><p>Brown algae <br>Diatoms Oomycetes </p><p>Rhizaria </p><p>In-Text Art&nbsp;(Page 555) </p><p>25 µm </p><p>Diatoms display either radial (circular) symmetry... <br>...or bilateral (left-right) symmetry. </p><p>27.8 Diatom&nbsp;Diversity (Page 556) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>9</p><p></p><ul style="display: flex;"><li style="flex:1">(A) <em>Himanthalia elongata </em></li><li style="flex:1">(B) <em>Postelsia palmiformis </em></li></ul><p></p><p>Holdfasts </p><p>27.9 Brown&nbsp;Algae (Page 556) </p><p><em>Saprolegnia </em>sp. </p><p>3 mm </p><p>27.10 An&nbsp;Oomycete (Page 557) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>10 </p><p>Alveolates <br>Stramenopiles </p><p>Cercozoans Foraminiferans Radiolarians </p><p>In-Text Art&nbsp;(Page 557) </p><p>1 mm </p><p>27.11 Building&nbsp;Blocks of Limestone&nbsp;(Page 557) </p><p></p><ul style="display: flex;"><li style="flex:1">(A) </li><li style="flex:1">(B) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>Astrolithium </em>sp. </li><li style="flex:1"><em>Hexacontium </em>sp. </li></ul><p></p><p>50 µm <br>250 µm </p><p>27.12 Radiolarians&nbsp;Exhibit Distinctive Pseudopods and Radial Symmetry&nbsp;(Page 557) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>11 </p><p>Excavates </p><p>Diplomonads Parabasalids <br>Heteroloboseans <br>Euglenids <br>Kinetoplastids </p><p>In-Text Art&nbsp;(Page 558) </p><p>(A) <em>Giardia </em>sp. </p><p>2.5 µm </p><p>(B) <em>T r ichomonas vaginalis </em></p><p>2.5 µm </p><p>27.13 Some&nbsp;Excavate Groups Lack Mitochondria&nbsp;(Page 558) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>12 </p><p>Photosynthetic chloroplasts are prominent features in a typical <em>Euglena </em>cell. </p><p>Flagella <br>Nucleus </p><p>Pigment shield </p><p>Stored polysaccharides from photosynthesis <br>Contractile vacuole <br>Photoreceptor </p><p>27.14 A&nbsp;Photosynthetic Euglenid&nbsp;(Page 559) </p><p>TablE27.1 </p><p>Three Pathogenic Trypanosomes </p><p></p><ul style="display: flex;"><li style="flex:1">Trypanosoma brucei </li><li style="flex:1">Trypanosoma cruzi </li><li style="flex:1">Leishmania major </li></ul><p></p><p>Leishmaniasis Sand fly </p><ul style="display: flex;"><li style="flex:1">Human disease </li><li style="flex:1">Sleeping sickness </li></ul><p>Tsetse fly <br>Chagas disease Assassin bugs (many species) None <br>Insect vector Vaccine or effective cure Strategy for survival </p><ul style="display: flex;"><li style="flex:1">None </li><li style="flex:1">None </li></ul><p>Changes surface recognition&nbsp;Causes changes in surface recognition&nbsp;Reduces effectiveness of macrophage </p><ul style="display: flex;"><li style="flex:1">molecules frequently </li><li style="flex:1">molecules on host cell </li><li style="flex:1">hosts </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Site in human body </li><li style="flex:1">Bloodstream; in final stages,&nbsp;Enters cells, especially muscle cells </li></ul><p>attacks nerve tissue <br>Enters cells, primarily macrophages <br>Approximate number of deaths per year </p><ul style="display: flex;"><li style="flex:1">50,000 </li><li style="flex:1">45,000 </li><li style="flex:1">60,000 </li></ul><p></p><p>(Page 559) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>13 </p><p>Amoebozoans </p><p>Loboseans <br>Plasmodial slime molds Cellular slime molds </p><p>In-Text Art&nbsp;(Page 559) </p><p><em>Chaos carolinensis </em></p><p>Pseudopods </p><p><em>Nebela collaris </em></p><p>120 µm </p><p>27.15 An&nbsp;Amoeba in Motion&nbsp;(Page 559) </p><p>Shell (test) made of sand grains </p><p>Plasma membrane of amoeba </p><p>Pseudopods of amoeba </p><p>18 µm </p><p>27.16 Life&nbsp;in a Glass House&nbsp;(Page 560) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>14 </p><p>(A) <br>30 mm <br>(B) </p><p>1.5 mm </p><p>27.17 A&nbsp;Plasmodial Slime Mold </p><p>(Page 560) </p><p>The sporangium of the mature fruiting structure will release spores. </p><p><em>Dictyostelium discoideum </em></p><p>Fruiting structure (various stages) </p><p>Slug <br>0.25 mm </p><p>27.18 A&nbsp;Cellular Slime Mold&nbsp;(Page 561) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>15 </p><p>Macronucleus Micronucleus </p><p>1 Two paramecia conjugate; all but one micronucleus in each cell disintegrate. The remaining micronucleus undergoes meiosis. <br>2 Three of the four haploid micronuclei disintegrate; the remaining micronucleus undergoes mitosis. </p><p>3</p><p>The paramecia donate micronuclei to each other. The macronuclei disintegrate. </p><p>4</p><p>The two micronuclei in each cell—each genetically <br>5 The new diploid micronuclei divide mitotically, eventually giving rise to a macronucleus and the appropriate number of micronuclei. different—fuse. </p><p>27.19 Conjugation&nbsp;in Paramecia&nbsp;(Page 562) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>16 </p><p>START </p><p>Eventually, some merozoites develop into male and </p><p>8</p><p>A blood-feeding female mosquito ingests the </p><p><em>Plasmodium </em>gametocytes. </p><p>1</p><p>Merozoites also invade red blood cells, grow and divide, and lyse the cells. They can reinfect the liver, producing new generations. </p><p>7</p><p>female gametocytes. </p><p>Male gamete </p><p>Within the mosquito, male and female </p><p>gametocytes develop </p><p>into gametes, which fuse. </p><p>2</p><p>Red blood cell <br>Female gamete </p><p>The resulting zygote </p><p>3</p><p>enters the mosquito’s gut wall and forms a cyst. </p><p></p><ul style="display: flex;"><li style="flex:1">Events in human </li><li style="flex:1">Events in mosquito </li></ul><p></p><p>Mosquito's gut wall </p><p>The zygote gives rise to sporozoites that invade the salivary gland. </p><p>4</p><p>Sporozoites penetrate liver cells and develop into merozoites. </p><p>6</p><p>(B) <br>Human liver cell <br>Mosquito's salivary gland </p><p>The mosquito injects sporozoites into a human’s blood when it feeds. </p><p>5<br>Cysts </p><p>27.20 Life&nbsp;Cycle of the Malarial Parasite&nbsp;(Page 564) </p><p>Mosquito's gut wall </p><p>170 µm </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>17 </p><p>INVESTIGATINGLIFE </p><p>27.21 Can&nbsp;Corals Reacquire Dinoflagellate Endosymbionts Lost to Bleaching? </p><p>HYPOTHESIS Bleached corals can acquire new photosynthetic endosymbionts from their environment. </p><p>Method 1. Count numbers of Symbiodinium, a photosynthetic dinoflagellate, living symbiotically in samples of a coral (Briareum sp.). <br>2. Stimulate bleaching by maintaining all Briareum colonies in darkness for 12 weeks. <br>3. After 12 weeks of darkness, count numbers of Symbiodinium in the coral samples; then return all colonies to light. <br>4. In some of the bleached colonies (the experimental group), introduce Symbiodinium strain B211—dinoflagellates that contain a unique molecular marker. Do not expose the others (the control group) to strain B211. Maintain both groups in the light for 6 weeks. </p><p>Results </p><p>70 </p><p>Experimental (exposed to strain B211) </p><p>60 </p><p>Control (not exposed to strain B211) </p><p>50 40 30 20 10 </p><p>Six weeks after return to light, both groups showed increases in number of symbionts present. DNA analysis showed that strain B211 symbionts were present in the experimental group. <br>After 12 weeks in dark, 0–1% of the photosynthetic endosymbionts remained. </p><p>3210</p><ul style="display: flex;"><li style="flex:1">Pre-bleach </li><li style="flex:1">Post-bleach </li><li style="flex:1">Week 3 </li><li style="flex:1">Week 6 </li></ul><p>(original state) </p><p></p><ul style="display: flex;"><li style="flex:1">Pre-bleach </li><li style="flex:1">Post-bleach </li></ul><p></p><p>CONCLUSION Corals can acquire new endosymbionts from their environment following bleaching. </p><p>Go to BioPortal for discussion and relevant links for all </p><p>INVESTIGATINGLIFE figures. </p><p>(Page 565) </p><p>© 2014 Sinauer Associates, Inc. </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us