
<p>Lecture Notebook </p><p>to accompany </p><p></p><ul style="display: flex;"><li style="flex:1">Sinauer aSSociateS, inc. </li><li style="flex:1">MacMillan </li></ul><p></p><p>Copyright © 2014 Sinauer Associates, Inc. Cover photograph © Alex Mustard/naturepl.com. This document may not be modified or distributed (either electronically or on paper) without the permission of the publisher, with the following exception: Individual users may enter their own notes into this document and may print it for their own personal use. </p><p>The Origin and Diversification of Eukaryotes </p><p>0207 </p><p>27.1 A Hypothetical Sequence for the Evolution of the Eukaryotic Cell (Page 550) </p><p>Cell wall DNA </p><p>The protective cell wall was lost. </p><p>1</p><p>Infolding of the </p><p>2</p><p>plasma membrane added surface area without increasing the cell’s volume. </p><p>Cytoskeleton (microfilament and microtubules) formed. </p><p>34</p><p>Internal membranes studded with ribosomes formed. </p><p>As regions of the infolded plasma membrane enclosed the cell’s DNA, a precursor of a </p><p>5</p><p>nucleus formed. <br>Microtubules from the cytoskeleton formed the eukaryotic flagellum, enabling propulsion. </p><p>6</p><p>Early digestive vacuoles evolved into lysosomes using enzymes from the early endoplasmic reticulum. </p><p>789</p><p>Mitochondria formed through endosymbiosis with a proteobacterium. </p><p>Endosymbiosis with cyanobacteria led to the development of chloroplasts. </p><p>Flagellum </p><p>To add your own notes to any page, use Adobe Reader’s </p><p>Typewriter feature, accessible via the Typewriter bar at the top of the window. (Requires Adobe Reader 8 or later. Adobe Reader can be downloaded free of charge from the </p><p>Adobe website: <a href="/goto?url=http://get.adobe.com/reader" target="_blank">http://get.adobe.com/reade</a><a href="/goto?url=http://get.adobe.com/reader" target="_blank">r</a>.) </p><p>Chloroplast Mitochondrion </p><p>Nucleus </p><p>2</p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>3</p><p>(A) Primary endosymbiosis </p><p>Eukaryote <br>Cyanobacterium </p><p>Cyanobacterium outer membrane </p><p>Peptidoglycan Cyanobacterium inner membrane </p><p>Host cell nucleus <br>Chloroplast </p><p>Peptidoglycan has been lost except in glaucophytes. </p><p>Chloroplastcontaining eukaryotic cell </p><p>(B) Secondary endosymbiosis </p><p>Host eukaryotic cell </p><p>Host membrane (from endocytosis) encloses the engulfed cell. </p><p>A trace of the engulfed cell’s nucleus is retained in some groups. </p><p>The engulfed cell’s plasma membrane (white) has been lost in euglenids and dinoflagellates. </p><p>27.2 Endosymbiotic Events in the Evolution of Chloroplasts </p><p>(Page 552) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>4</p><p>Alveolates <br>Stramenopiles <br>Rhizaria Excavates Plantae Chs. 28 and 29 <br>Amoebozoans <br>Fungi <br>Ch. 30 </p><p>Ophisthokonts </p><p>Choanoflagellates <br>Animals <br>Chs. 31–33 </p><p>Precambrian </p><p></p><ul style="display: flex;"><li style="flex:1">Paleozoic </li><li style="flex:1">Mesozoic </li></ul><p></p><p>Cenozoic </p><p>to 4.5 bya </p><ul style="display: flex;"><li style="flex:1">1.5 </li><li style="flex:1">1.4 </li><li style="flex:1">1.3 </li><li style="flex:1">1.2 </li><li style="flex:1">1.1 </li><li style="flex:1">1.0 </li><li style="flex:1">0.9 </li><li style="flex:1">0.8 </li><li style="flex:1">0.7 </li><li style="flex:1">0.6 </li><li style="flex:1">0.5 </li><li style="flex:1">0.4 </li><li style="flex:1">0.3 </li><li style="flex:1">0.2 </li><li style="flex:1">0.1 </li><li style="flex:1">0</li></ul><p>Billions of years ago </p><p>27.3 Precambrian Divergence of Major Eukaryote Groups (Page 553) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>5</p><p>Dinoflagellates Apicomplexans <br>Ciliates </p><p>Stramenopiles <br>Rhizaria </p><p>In-Text Art (Page 553) </p><p><em>Peridinium </em>sp. </p><p>Equatorial groove </p><p>Longitudinal groove </p><p>27.4 A Dinoflagellate (Page 554) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>6</p><p></p><ul style="display: flex;"><li style="flex:1">(A) <em>Paramecium </em>sp. </li><li style="flex:1">(B) <em>Didinium nasutum </em></li><li style="flex:1">(C) <em>Euplotes </em>sp. </li></ul><p></p><p>10 µm </p><p>27.5 Diversity among the Ciliates (Page 554) </p><p></p><ul style="display: flex;"><li style="flex:1">7 µm </li><li style="flex:1">25 µm </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Rows of fused cilia </li><li style="flex:1">Oral groove </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Cilia </li><li style="flex:1">Bands of cilia </li></ul><p></p><p>The macronucleus controls the cell’s activities. <br>Micronuclei function in genetic recombination. </p><p>Contractile vacuole </p><p>Alveoli <br>Cilia <br>Digestive vacuole </p><p>Oral groove </p><p>Trichocyst Fibrils <br>Anal pore <br>Pellicle <br>Alveolus </p><p>Cilium </p><p>27.6 Anatomy of Paramecium (Page 555) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>7</p><p>INVESTIGATINGLIFE </p><p>27.7 The Role of Vacuoles in Ciliate Digestion </p><p>HYPOTHESIS The digestive vacuoles of Paramecium produce an acidic environment that allows the organism to digest food particles. </p><p>Method 1. Feed Paramecium yeast cells stained with Congo red, a dye that is red at neutral or basic pH but turns green at acidic pH. <br>2. Under a light microscope, observe the formation and degradation of digestive vacuoles within the Paramecium. Note time and sequence of color (i.e., acid level) changes. </p><p>Results </p><p>1 A digestive vacuole forms around yeast cells. </p><p>2 The change in color shows that the interior vacuole has become </p><p>Stained yeast cells </p><p>acidic. </p><p>Oral groove </p><p>As products of digestion move into the cytosol, the pH increases in the vacuole (the dye becomes red again). </p><p>3</p><p>Red-stained (basic) waste material is expelled. </p><p>4</p><p>CONCLUSION Some ciliates acidify digestive vacuoles to assist in the breakdown of food. </p><p>Go to BioPortal for discussion and relevant links for all </p><p>INVESTIGATINGLIFE figures. </p><p>(Page 555) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>8</p><p>Alveolates </p><p>Brown algae <br>Diatoms Oomycetes </p><p>Rhizaria </p><p>In-Text Art (Page 555) </p><p>25 µm </p><p>Diatoms display either radial (circular) symmetry... <br>...or bilateral (left-right) symmetry. </p><p>27.8 Diatom Diversity (Page 556) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>9</p><p></p><ul style="display: flex;"><li style="flex:1">(A) <em>Himanthalia elongata </em></li><li style="flex:1">(B) <em>Postelsia palmiformis </em></li></ul><p></p><p>Holdfasts </p><p>27.9 Brown Algae (Page 556) </p><p><em>Saprolegnia </em>sp. </p><p>3 mm </p><p>27.10 An Oomycete (Page 557) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>10 </p><p>Alveolates <br>Stramenopiles </p><p>Cercozoans Foraminiferans Radiolarians </p><p>In-Text Art (Page 557) </p><p>1 mm </p><p>27.11 Building Blocks of Limestone (Page 557) </p><p></p><ul style="display: flex;"><li style="flex:1">(A) </li><li style="flex:1">(B) </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><em>Astrolithium </em>sp. </li><li style="flex:1"><em>Hexacontium </em>sp. </li></ul><p></p><p>50 µm <br>250 µm </p><p>27.12 Radiolarians Exhibit Distinctive Pseudopods and Radial Symmetry (Page 557) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>11 </p><p>Excavates </p><p>Diplomonads Parabasalids <br>Heteroloboseans <br>Euglenids <br>Kinetoplastids </p><p>In-Text Art (Page 558) </p><p>(A) <em>Giardia </em>sp. </p><p>2.5 µm </p><p>(B) <em>T r ichomonas vaginalis </em></p><p>2.5 µm </p><p>27.13 Some Excavate Groups Lack Mitochondria (Page 558) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>12 </p><p>Photosynthetic chloroplasts are prominent features in a typical <em>Euglena </em>cell. </p><p>Flagella <br>Nucleus </p><p>Pigment shield </p><p>Stored polysaccharides from photosynthesis <br>Contractile vacuole <br>Photoreceptor </p><p>27.14 A Photosynthetic Euglenid (Page 559) </p><p>TablE27.1 </p><p>Three Pathogenic Trypanosomes </p><p></p><ul style="display: flex;"><li style="flex:1">Trypanosoma brucei </li><li style="flex:1">Trypanosoma cruzi </li><li style="flex:1">Leishmania major </li></ul><p></p><p>Leishmaniasis Sand fly </p><ul style="display: flex;"><li style="flex:1">Human disease </li><li style="flex:1">Sleeping sickness </li></ul><p>Tsetse fly <br>Chagas disease Assassin bugs (many species) None <br>Insect vector Vaccine or effective cure Strategy for survival </p><ul style="display: flex;"><li style="flex:1">None </li><li style="flex:1">None </li></ul><p>Changes surface recognition Causes changes in surface recognition Reduces effectiveness of macrophage </p><ul style="display: flex;"><li style="flex:1">molecules frequently </li><li style="flex:1">molecules on host cell </li><li style="flex:1">hosts </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Site in human body </li><li style="flex:1">Bloodstream; in final stages, Enters cells, especially muscle cells </li></ul><p>attacks nerve tissue <br>Enters cells, primarily macrophages <br>Approximate number of deaths per year </p><ul style="display: flex;"><li style="flex:1">50,000 </li><li style="flex:1">45,000 </li><li style="flex:1">60,000 </li></ul><p></p><p>(Page 559) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>13 </p><p>Amoebozoans </p><p>Loboseans <br>Plasmodial slime molds Cellular slime molds </p><p>In-Text Art (Page 559) </p><p><em>Chaos carolinensis </em></p><p>Pseudopods </p><p><em>Nebela collaris </em></p><p>120 µm </p><p>27.15 An Amoeba in Motion (Page 559) </p><p>Shell (test) made of sand grains </p><p>Plasma membrane of amoeba </p><p>Pseudopods of amoeba </p><p>18 µm </p><p>27.16 Life in a Glass House (Page 560) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>14 </p><p>(A) <br>30 mm <br>(B) </p><p>1.5 mm </p><p>27.17 A Plasmodial Slime Mold </p><p>(Page 560) </p><p>The sporangium of the mature fruiting structure will release spores. </p><p><em>Dictyostelium discoideum </em></p><p>Fruiting structure (various stages) </p><p>Slug <br>0.25 mm </p><p>27.18 A Cellular Slime Mold (Page 561) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>15 </p><p>Macronucleus Micronucleus </p><p>1 Two paramecia conjugate; all but one micronucleus in each cell disintegrate. The remaining micronucleus undergoes meiosis. <br>2 Three of the four haploid micronuclei disintegrate; the remaining micronucleus undergoes mitosis. </p><p>3</p><p>The paramecia donate micronuclei to each other. The macronuclei disintegrate. </p><p>4</p><p>The two micronuclei in each cell—each genetically <br>5 The new diploid micronuclei divide mitotically, eventually giving rise to a macronucleus and the appropriate number of micronuclei. different—fuse. </p><p>27.19 Conjugation in Paramecia (Page 562) </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>16 </p><p>START </p><p>Eventually, some merozoites develop into male and </p><p>8</p><p>A blood-feeding female mosquito ingests the </p><p><em>Plasmodium </em>gametocytes. </p><p>1</p><p>Merozoites also invade red blood cells, grow and divide, and lyse the cells. They can reinfect the liver, producing new generations. </p><p>7</p><p>female gametocytes. </p><p>Male gamete </p><p>Within the mosquito, male and female </p><p>gametocytes develop </p><p>into gametes, which fuse. </p><p>2</p><p>Red blood cell <br>Female gamete </p><p>The resulting zygote </p><p>3</p><p>enters the mosquito’s gut wall and forms a cyst. </p><p></p><ul style="display: flex;"><li style="flex:1">Events in human </li><li style="flex:1">Events in mosquito </li></ul><p></p><p>Mosquito's gut wall </p><p>The zygote gives rise to sporozoites that invade the salivary gland. </p><p>4</p><p>Sporozoites penetrate liver cells and develop into merozoites. </p><p>6</p><p>(B) <br>Human liver cell <br>Mosquito's salivary gland </p><p>The mosquito injects sporozoites into a human’s blood when it feeds. </p><p>5<br>Cysts </p><p>27.20 Life Cycle of the Malarial Parasite (Page 564) </p><p>Mosquito's gut wall </p><p>170 µm </p><p>© 2014 Sinauer Associates, Inc. </p><p>|</p><p>chapter 27 the origin and Diversification of eukaryotes </p><p>17 </p><p>INVESTIGATINGLIFE </p><p>27.21 Can Corals Reacquire Dinoflagellate Endosymbionts Lost to Bleaching? </p><p>HYPOTHESIS Bleached corals can acquire new photosynthetic endosymbionts from their environment. </p><p>Method 1. Count numbers of Symbiodinium, a photosynthetic dinoflagellate, living symbiotically in samples of a coral (Briareum sp.). <br>2. Stimulate bleaching by maintaining all Briareum colonies in darkness for 12 weeks. <br>3. After 12 weeks of darkness, count numbers of Symbiodinium in the coral samples; then return all colonies to light. <br>4. In some of the bleached colonies (the experimental group), introduce Symbiodinium strain B211—dinoflagellates that contain a unique molecular marker. Do not expose the others (the control group) to strain B211. Maintain both groups in the light for 6 weeks. </p><p>Results </p><p>70 </p><p>Experimental (exposed to strain B211) </p><p>60 </p><p>Control (not exposed to strain B211) </p><p>50 40 30 20 10 </p><p>Six weeks after return to light, both groups showed increases in number of symbionts present. DNA analysis showed that strain B211 symbionts were present in the experimental group. <br>After 12 weeks in dark, 0–1% of the photosynthetic endosymbionts remained. </p><p>3210</p><ul style="display: flex;"><li style="flex:1">Pre-bleach </li><li style="flex:1">Post-bleach </li><li style="flex:1">Week 3 </li><li style="flex:1">Week 6 </li></ul><p>(original state) </p><p></p><ul style="display: flex;"><li style="flex:1">Pre-bleach </li><li style="flex:1">Post-bleach </li></ul><p></p><p>CONCLUSION Corals can acquire new endosymbionts from their environment following bleaching. </p><p>Go to BioPortal for discussion and relevant links for all </p><p>INVESTIGATINGLIFE figures. </p><p>(Page 565) </p><p>© 2014 Sinauer Associates, Inc. </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages17 Page
-
File Size-