In Search of the Perfect Fluid

In Search of the Perfect Fluid

In Search of the Perfect Fluid Thomas Schaefer, North Carolina State University See T. Sch¨afer, D. Teaney, “Perfect Fluidity” [arXiv:0904.3107] Measures of Perfection Viscosity determines shear stress (“friction”) in fluid flow ∂v F = Aη x ∂y Dimensionless measure of shear stress: Reynolds number n Re = mvr η × fluid flow property property [η/n] = ~ • s Relativistic systems Re = τT • η × Other sources of dissipation (thermal conductivity, bulk viscosity, ...) vanish for certain fluids, but shear viscosity is always non-zero. There are reasons to believe that η is bounded from below by a constant times ~s/kB. In a large class of theories η/s ~/(4πk ). ≥ B A fluid that saturates the bound is a “perfect fluid”. Fluids: Gases, Liquids, Plasmas, ... Hydrodynamics: Long-wavelength, low-frequency dynamics of conserved or spontaneously broken sym- metry variables. −1 τ τmicro τ λ ∼ ∼ Historically: Water (ρ, ǫ, ~π) Example: Simple Fluid Conservation laws: mass, energy, momentum ∂ρ + ~ (ρ~v) = 0 ∂t ∇ ∂ǫ + ~ ~ ǫ = 0 ∂t ∇ ∂ ∂ (ρvi) + Πij = 0 ∂t ∂xj [Euler/Navier-Stokes equation] Constitutive relations: Energy momentum tensor 2 Π = P δ + ρv v + η ∂ v + ∂ v δ ∂ v + O(∂2) ij ij i j i j j i − 3 ij k k reactive dissipative 2nd order Kinetic Theory Kinetic theory: conserved quantities carried by quasi-particles ∂f p + ~v ~ f + F~ ~ f = C[f ] ∂t · ∇x p · ∇p p p 1 η n pl¯ mfp ∼ 3 Normalize to density. Uncertainty relation suggests η pl¯ mfp ~ n ∼ ≥ Also: s k n and η/s ~/k ∼ B ≥ B Validity of kinetic theory as pl¯ mfp ~? ∼ Effective Theories for Fluids (Here: Weak Coupling QCD) 1 =q ¯ (iD/ m )q Ga Ga L f − f f − 4 µν µν ∂f p + ~v ~ f = C[f ] (ω < T ) ∂t · ∇x p p ∂ ∂ 4 (ρvi) + Πij = 0 (ω<g T ) ∂t ∂xj Holographic Duals: Transport Properties Thermal (conformal) field theory AdS5 black hole ≡ Hawking-Bekenstein entropy CFT entropy ⇔ area of event horizon ∼ Graviton absorption cross section shear viscosity ⇔ area of event horizon ∼ δS 0 Tµν = gµν = gµν + γµν δgµν Holographic Duals: Transport Properties Thermal (conformal) field theory AdS5 black hole ≡ Hawking-Bekenstein entropy CFT entropy ⇔ area of event horizon ∼ Graviton absorption cross section shear viscosity ⇔ area of event horizon ∼ η s Strong coupling limit η ~ = s 4πkB h¯ Son and Starinets (2001) 4πkB 2 0 g Nc Strong coupling limit universal? Provides lower bound for all theories? Effective Theories (Strong coupling) 1 1 = λ¯(iσ D)λ Ga Ga + ... S = d5x√ g + ... L · − 4 µν µν ⇔ 2κ2 − R 5 Z ∂ ∂ (ρvi) + Πij = 0 (ω < T ) ∂t ∂xj Kinetics vs No-Kinetics AdS/CFT low viscosity goo pQCD kinetic plasma Kinetics vs No-Kinetics Spectral function ρ(ω)=ImGR(ω, 0) associated with Txy 0.6 1 ρxyxy(ω) s 2ω 1/g4 (ω/T )3 0.5 AdS/CFT ∼ ∼ π(ω/2πT)3 ω 0.4 )/2 ω ( 0.3 xyxy ρ 1/s 1 1 0.2 ∼ ∼ η/s=1/4π 0.1 g2 ∼ 4 2 0 g T g T gT T ω 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 ω/2πT weak coupling QCD strong coupling AdS/CFT transport peak vs no transport peak Perfect Fluids: How to be a contender? Bound is quantum mechanical need quantum fluids Bound is incompatible with weak coupling and kinetic theory strong interactions, no quasi-particles Model system has conformal invariance (essential?) (Almost) scale invariant systems Perfect Fluids: The contenders Liquid Helium (T=0.1 meV) QGP (T=180 MeV) Trapped Atoms (T=0.1 neV) Perfect Fluids: The contenders Liquid Helium η = 1.7 10−6Pa s QGP η = 5 1011Pa s · · · · Consider ratios Trapped Atoms η/s η = 1.7 10−15Pa s · · Kinetic Theory: Quasiparticles low temperature high temperature unitary gas phonons atoms + + ¢ £ ¡ ¡ helium phonons, rotons atoms + + ¢ £ ¡ ¡ QCD pions quarks, gluons ¡ ¢ £ ¤ ¡ Low T: Phonons Goldstone boson ψψ = e2iϕ ψψ h i 5 2 ~ 2 / 3/2 ( ϕ) = c0m µ ϕ˙ ∇ + ... L − − 2m ! Viscosity dominated by ϕ + ϕ ϕ + ϕ → 5 8 ξ TF η = A 3 5 + + cs T ¢ £ ¡ T.S., G.R. (2007) High T: Atoms Cross section regularized by thermal momentum 15 η = (mT )3/2 32√2 ¡ Bruun (2005) Low T: Phonons and Rotons Effective lagrangian ∗ 2 2 2 = ϕ (∂0 v )ϕ + iλϕ˙(~ ϕ) + ... L − ∇ ∗ ∗ 2 + ϕ (i∂0 ∆)ϕ + c0(ϕ ϕ ) + ... R,v − R,v R,v R,v Shear viscosity cRph ∆/T cph η = ηR + e + 5 + ... √T T Landau & Khalatnikov High T: Atoms Viscosity governed by hard core (V 1/r12) ∼ 2/3 η = η0(T/T0) Low T: Pions Chiral perturbation theory f 2 = π Tr[∂ U∂µU †] + (BTr[MU] + h.c.) + ... L 4 µ Viscosity dominated by ππ scattering f 4 η = A π T ¡ High T: Quasi-Particles HTL theory (screening, damping, ...) quasi-particle width vαv = dΩ Ga β Ga,µβ 2 LHTL µα (v D)2 γ g T Z · ∼ Viscosity dominated by t-channel gluon exchange 27.13T 3 η = g4 log(2.7/g) AMY (2003) ¡ ¢ £ ¤ Theory Summary 1.6 1.4 unitary gas 4 η/s η/s He 1.2 6 1 0.8 4 0.6 0.4 2 0.2 0.2 0.4 0.6 0.8 2 4 6 8 10 12 14 T/TF T [K] 5 QCD η/s 4 3 2 1 100 200 300 400 500 T [MeV ] I. Experiment (Liquid Helium) 200 100 P] 50 µ [ η 20 10 1 1.5 2 T [K] Kapitza (1938) Hollis-Hallett (1955) viscosity vanishes below Tc roton minimum, phonon rise capillary flow viscometer rotation viscometer η/s 0.8 ~/k ≃ B II. Scaling Flows (Cold Gases) transverse expansion expansion (rotating trap) collective modes ∂n + ~ (n~v) = 0 ∂t ∇ · ∂~v mn + mn ~v ~ ~v = ~ P n~ V ∂t · ∇ −∇ − ∇ Scaling Flows n5/3 mT Universal equation of state P = f m n2/3 Equilibrium density profile x2 y2 z2 n0(x) = n(µ(x), T ) µ(x) = µ0 1 − R2 − R2 − R2 x y z Scaling Flow: Stretch and rotate profile µ0 µ0(t), T T0(µ0(t)/µ0), R R (t),... → → x → x Linear velocity profile ~v(x, t) = (α x + (α ω)y,α y + (α + ω)y,α z) x − y z “Hubble flow” Dissipation (Scaling Flows) Energy dissipation (η,ζ,κ: shear, bulk viscosity, heat conductivity) 2 1 2 E˙ = d3xη(x) ∂ v + ∂ v δ ∂ v −2 i j j i − 3 ij k k Z 2 1 2 d3xζ(x)(∂ v ) d3xκ(x)(∂ T ) − i i − T i Z Z Have ζ = 0 and T (x) = const. Universality implies T η(x) = s(x) α s µ(x) d3xη(x) = S α h si Z Navier-Stokes equation Option 1: Moment method d3x x (ρv˙ + ...) = d3x x ( P δΠ ) k i k −∇i − ∇j ij Z Z Only involves η /E0. h i Option 2: Scaling ansatz for η(µ, T ) 3/2 P (n, T ) η(n, T ) = η0(mT ) + η1 T Option 3: Numerical solutions. Dissipation 80 Ri θ [ ◦] [µm] 300 60 R E/EF =0.56 ⊥ 200 40 E/EF =2.1 100 20 Rz 0.5 1 1.5 2 0.5 1 1.5 2 2.5 3 3.5 t[ms] t [ms] R R θ ⊥ ⊥ Rz O’Hara et al (2002), Kinast et al (2005), Clancy et al (2007) Dissipation 80 Ri θ [ ◦] [µm] 300 60 R E/EF =0.56 ⊥ 200 40 E/EF =2.1 100 20 Rz 0.5 1 1.5 2 0.5 1 1.5 2 2.5 3 3.5 t[ms] t [ms] 5 1/3 (δt0)/t0 0.008 α 2 10 S/N 0.85 = h si · (δa)/a 0.024 1/(4π) N 2.3 E0/EF ◦ t0: “Crossing time” (b⊥ = bz, θ = 45 ) a: amplitude Time Scales dissipative hydro/free streaming ballistic Ri [µm] 300 R ⊥ 200 100 Rz 0.5 1 1.5 2 t[ms] Collective modes: Small viscous correction exponentiates a(t) = a0 cos(ωt) exp( Γ t) − Γ E0 N η/s = (3Nλ)1/3 h i ω E S ⊥ F 1.5 η/s h i 1.0 0.5 0.0 0.2 0.4 0.6 0.8 T/TF Kinast et al. (2006), Schaefer (2007) Limitations of Scaling Flows Simple model for η(n, T ) 3/2 P (n, T ) η(n, T ) = η0(mT ) + η1 f T Find exact scaling solutions of the Navier Stokes equation But: η0 completely unconstrained by data 3/2 [η0(mT ) ( v + ...)] = 0 ∇j ∇i j 1.0 η/n 0.8 0.6 0.4 0.2 0.0 0.5 1.0 1.5 2.0 2.5 y Relaxation Time Model In real systems stress tensor does not relax to Navier-Stokes form instantaneously. Consider ∂ 2 τ + ~v ~ δΠ = δΠ η ∂ v + ∂ v δ ∂ v R ∂t · ∇ ij ij − i j j i − 3 ij · In kinetic theory τ (η/n) T −1 R ≃ 0.08 3/2 Γ ω disspiation from η (mT ) : 0.06 • ∼ ⊥ corona excerts drag force. 0.04 modified T dependence 0.02 • modifed N scaling 0.2 0.4 0.6 0.8 1.0 1.2 • T/TF Where are we? high temperature (T > 2.5T ) dominated by corona • c low temperature (T T ): evidence for low viscosity • ∼ c (η/s < 0.4) core also seen in “irrotational flow” data • full (2nd order hydro or hydro+kin) analysis needed • III. Elliptic Flow (QGP) Hydrodynamic Hydro model PHENIX Data STAR Data + - 0 2 π π expansion converts π + KS + - 0.3 K K +K Λ+Λ coordinate space p p+p Λ anisotropy 0.2 to momentum space anisotropy 0.1 Anisotropy Parameter v 0 0 2 4 6 b Transverse Momentum p T (GeV/c) source: U.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    35 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us