Beyond the Landau Paradigm Beyond the Landau Paradigm

Beyond the Landau Paradigm Beyond the Landau Paradigm

Topological phase transitions Beyond the Landau paradigm Beyond the Landau paradigm Topological phase transitions " for topological phase transitions and topological phases of matter " Nobel Prize in Physics in 2016 Nobel Prize in Physics in 2016 " for topological phase transitions and topological phases of matter " David Thouless Michael Kosterlitz Duncan Haldane U. of Washington Brown U. Princeton U. Berezinskii - Kosterlitz - Thouless transition BKT transition Vadim Berezinskii Michael Kosterlitz David Thouless topological phase transitions BKT transition Vadim Berezinskii Michael Kosterlitz David Thouless topological phase transitions Berezinskii - Kosterlitz - Thouless transition topological phase transitions Berezinskii - Kosterlitz - Thouless transition BKT transition Vadim Berezinskii Michael Kosterlitz David Thouless Ising model; si = ±1; x y XY model; ~si = (si ; si ) = (cos θi ; sin θi ) P HIsing = −J si sj discrete sym. <i;j> P P HXY = −J ~si · ~sj = −J cos θi − θj continuous sym. <i;j> <i;j> Ising modeld ` = 1 XY modeld ` = 2 symmetry Ising modeld ` = 1 XY modeld ` = 2 symmetry Ising model; si = ±1; x y XY model; ~si = (si ; si ) = (cos θi ; sin θi ) P HIsing = −J si sj discrete sym. <i;j> P P HXY = −J ~si · ~sj = −J cos θi − θj continuous sym. <i;j> <i;j> symmetry Ising model; si = ±1; x y XY model; ~si = (si ; si ) = (cos θi ; sin θi ) P HIsing = −J si sj discrete sym. <i;j> P P HXY = −J ~si · ~sj = −J cos θi − θj continuous sym. <i;j> <i;j> Ising modeld ` = 1 XY modeld ` = 2 discrete symmetry d = 1: m(T ; 0) = 0 (T > 0) 8 < 0; T > Tc d ≥ 2: m(T ; 0) = : 6= 0; T < Tc Mermin - Wagner theorem ('66) d = 1; 2; m~ (T ; 0) = 0 (T > 0) 8 < 0; T > Tc d ≥ 3; m~ (T ; 0) = : 6= 0; T < Tc continuous symmetry continuous symmetry Mermin - Wagner theorem ('66) d = 1; 2; m~ (T ; 0) = 0 (T > 0) 8 < 0; T > Tc d ≥ 3; m~ (T ; 0) = : 6= 0; T < Tc no long-range order in two-dimensional XY- model no spontaneous symmetry breaking in two-dimensional XY- model no spontaneous symmetry breaking in two-dimensional XY- model no long-range order in two-dimensional XY- model discrete symmetry Ising model d > 1 Γ(r; T ; h = 0) = lim [ < s~r 0 s~r 0+~r > − < s~r 0 > < s~r 0+~r > ] 1 8 −r/ξ(T ) e ; T ! T <> r d−2+η c Γ(r; T ; h = 0) ∼ :> 1 ; T = T r d−2+η c correlation function Ising model d > 1 Γ(r; T ; h = 0) = lim [ < s~r 0 s~r 0+~r > − < s~r 0 > < s~r 0+~r > ] 1 8 −r/ξ(T ) e ; T ! T <> r d−2+η c Γ(r; T ; h = 0) ∼ :> 1 ; T = T r d−2+η c correlation function discrete symmetry Γ(r; T ; h = 0) = lim [ < s~r 0 s~r 0+~r > − < s~r 0 > < s~r 0+~r > ] 1 8 −r/ξ(T ) e ; T ! T <> r d−2+η c Γ(r; T ; h = 0) ∼ :> 1 ; T = T r d−2+η c correlation function discrete symmetry Ising model d > 1 correlation function discrete symmetry Ising model d > 1 Γ(r; T ; h = 0) = lim [ < s~r 0 s~r 0+~r > − < s~r 0 > < s~r 0+~r > ] 1 8 −r/ξ(T ) e ; T ! T <> r d−2+η c Γ(r; T ; h = 0) ∼ :> 1 ; T = T r d−2+η c continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I Gaussian Heff [m~ ] Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation Z ( 1 2 + K 2 aτ + 2 A u 2 H [Φ ; Φt ] = G + d~r (rΦ ) + (Φ ) + eff ` 0 2 ` 2 ` 1 2 ) K 2 aτ + 6 A u 2 + (rΦt ) + (Φt ) 2 2 I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) - transverse fluctuation I Gaussian Heff [m~ ] I correlation functions: 0 00 0 00 Γ`;`(~r ; ~r ) = < Φ`(~r )Φ`(~r ) > 0 00 0 00 Γt;t (~r ; ~r ) = < Φt (~r )Φt (~r ) > K 1 2 I 2 = aτ + 2 A u ξ` K 1 2 2 = aτ + 6 A u ξt correlation functions continuous symmetry d > 2 m~ = m1 e~1 + m2 e~2 = A cos θ e~1 + A sin θ e~2 I state with spontaneously broken continuous symmetry: q 6ajτj A = A = u ; θ = θ = 0 =) m~ 0 = (m1;0; 0) = A e~1 I consider a small fluctuation around this state: m~ 0 −! m~ = A + Φ`(~r) e~1 + Φt (~r) e~2 I Φ`(~r) - longitudinal fluctuation, Φt (~r) -

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    120 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us