Mathematische Annalen Digital Object Identifier (DOI) 10.1007/S002080100153

Mathematische Annalen Digital Object Identifier (DOI) 10.1007/S002080100153

Math. Ann. (2001) Mathematische Annalen Digital Object Identifier (DOI) 10.1007/s002080100153 Pfaff τ-functions M. Adler · T. Shiota · P. van Moerbeke Received: 20 September 1999 / Published online: ♣ – © Springer-Verlag 2001 Consider the two-dimensional Toda lattice, with certain skew-symmetric initial condition, which is preserved along the locus s =−t of the space of time variables. Restricting the solution to s =−t, we obtain another hierarchy called Pfaff lattice, which has its own tau function, being equal to the square root of the restriction of 2D-Toda tau function. We study its bilinear and Fay identities, W and Virasoro symmetries, relation to symmetric and symplectic matrix integrals and quasiperiodic solutions. 0. Introduction Consider the set of equations ∂m∞ n ∂m∞ n = Λ m∞ , =−m∞(Λ ) ,n= 1, 2,..., (0.1) ∂tn ∂sn on infinite matrices m∞ = m∞(t, s) = (µi,j (t, s))0≤i,j<∞ , M. Adler∗ Department of Mathematics, Brandeis University, Waltham, MA 02454–9110, USA (e-mail: [email protected]) T. Shiota∗∗ Department of Mathematics, Kyoto University, Kyoto 606–8502, Japan (e-mail: [email protected]) P. van Moerbeke∗∗∗ Department of Mathematics, Universit´e de Louvain, 1348 Louvain-la-Neuve, Belgium Brandeis University, Waltham, MA 02454–9110, USA (e-mail: [email protected] and @math.brandeis.edu) ∗ The support of a National Science Foundation grant # DMS-98-4-50790 is gratefully ac- knowledged. ∗∗ The support of Japanese ministry of education’s grant-in-aid for scientific research, and the hospitality of the University of Louvain and Brandeis University are gratefully acknowledged. ∗∗∗ The support of a National Science Foundation grant # DMS-98-4-50790, a Nato, a FNRS and a Francqui Foundation grant is gratefully acknowledged. 2 M. Adler et al. where t = (t1,t2,...)and s = (s1,s2,...)are two sequences of scalar indepen- dent variables, Λ = (δi,j−1)0≤i,j<∞ is the shift matrix, and Λ its transpose. In 1 [2,4], it was shown that Borel decomposing m∞ into lower- and upper-triangular matrices S1 = S1(t, s) and S2 = S2(t, s): −1 ∞ m∞(t, s) = µij = S S , t s ∈ C , 0≤i,j<∞ 1 2 for “generic” , (0.2) L := S ΛS−1 leads to a two-Toda (two-dimensional Toda) system for 1 1 1 and L = S ΛS−1 2 2 2 , ∂L ∂L i =[(Ln) ,L ] , i =[(Ln) ,L ] ,i= , , 1 + i 2 − i 1 2 ∂tn ∂sn with A = A− + A+ being the decomposition into lower- and strictly upper- triangular matrices. The solution L1 and L2 can be expressed entirely in terms of a sequence of τ-functions τ = (τ0,τ1,...)given by τn(t, s) = det mn(t,s), mn(t, s) = (µi,j (t, s))0≤i,j<n , (0.3) for n ∈ Z≥0 := {0, 1,...}. As readily seen from formula (0.1), the 2-Toda flow then maintains the relation m∞(t, s) =−m∞(−s,−t) , and hence, by formula (0.3) n τn(t, s) = (−1) τn(−s,−t). (0.4) The main point of this paper is to study equation (0.1) with skew-symmetric initial condition m∞(0, 0) and the restriction of the system to s =−t. When s →−t, formula (0.4) shows that in the limit the odd τ-functions vanish, whereas the even τ-functions are determinants of skew-symmetric matrices. In particular, the factorization (0.2) fails; in fact in the limit the system leaves the main stratum to penetrate a deeper stratum in the Borel decomposition. In this paper we show this specialization s =−t leads to its own system, the Pfaff lattice on a successor L to the 2-Toda Lax pair (L1,L2), whereas in [7], we have shown this system is integrable by producing a Lax pair ∂L i i = −πkL ,L = πnL ,L , ∂ti ∞ 1 Here “t, s ∈ C ” is an informal way of saying that t and s are two sequences of independent ∞ scalar variables. Under suitable assumptions, m∞(t, s) exists for all t, s ∈ C and the decompo- ∞ sition holds for “generic” t, s ∈ C , but in general a function of those variables may be defined ∞ ∞ only in an open subset of C × C , or may even be a formal power series in t and s. Pfaff τ-functions 3 on semi-infinite matrices of the form 01 −d1 a1 O d1 1 L = . −d2 a2 d 2 1 . ∗ .. .. The projections πk and πn correspond to the Lie algebra splitting (in the formula below, lower-triangular with special diagonal means: the diagonal consists of 2 × 2 blocks, each of them proportional to the 2 × 2 identity) k ={ } gl(∞) = k ⊕ n lower-triangular matrices, with special diagonal n = sp(∞) ={a such that JaJ = a}, where 01 O − 10 01 − J := 10 with J 2 =−I. O 01 − 10 . .. The precise projections take on the following form2 a = (a) + (a) k n 1 = (a− − J(a+) J)+ (a0 − J(a0) J) 2 1 + (a+ + J(a+) J)+ (a + J(a ) J) . 2 0 0 The solution to the Pfaff lattice can be expressed in terms of “Pfaff τ-functions" τ(t)˜ as follows: L(t) = Q(t)ΛQ(t)−1, 2 a± refers to projection onto strictly upper (strictly lower) triangular matrices, with all 2 × 2 diagonal blocks equal zero. a0 refers to projection onto the “diagonal", consisting of 2 × 2 blocks. 4 M. Adler et al. where Q(t) is the lower-triangular matrix whose entries are given by the coeffi- cients of the polynomials in λ: 2n j q2n(t, λ) := Q2n,j (t)λ j=0 λ2n −1 = τ˜2n(t −[λ ]) τ˜2nτ˜2n+2 2n+1 j q2n+1(t, λ) := Q2n+1,j (t)λ j=0 λ2n ∂ = (λ + )τ˜ (t −[λ−1]) ∂t 2n τ˜2nτ˜2n+2 1 where τ˜2n(t) are Pfaffians: 1/2 1/2 τ˜2n(t) := Pf m2n(t, −t) = (det m2n(t, −t)) = τ2n(t, −t) , (0.5) for every even n ∈ Z≥0. The qi are skew-orthonormal polynomials with respect to a skew inner-product , , namely qi,qj =Jij in terms of the J -matrix defined earlier; see [7]. The “Pfaffian τ˜-function” is itself not a 2-Toda τ-function, but it ties up remarkably with the 2-Toda τ-function τ (see (0.3)) as follows3: τ2n(t, −t −[α]+[β]) =˜τ2n(t)τ˜2n(t +[α]−[β]) (0.6) τ2n+1(t, −t −[α]+[β]) = (β − α)τ˜2n(t −[β])τ˜2n+2(t +[α]). When β → α, we approach the deeper stratum in the Borel decomposition of m∞ in a very specific way. It shows that the odd τ-functions τ2n+1(t, −t −[α]+[β]) approach zero linearly as β → α, at the rate depending on α: lim τ n+ (t, −t −[α]+[β])/(β − α) =˜τ n(t −[α])τ˜ n+ (t +[α]). β→α 2 1 2 2 2 Equations (0.6) are crucial in establishing bilinear relations for Pfaffian τ˜-func- tions: for all t,t ∈ C∞ and m, n positive integers ∞ i −1 −1 i= (ti −ti )z 2n−2m−2 τ˜2n(t −[z ])τ˜2m+2(t +[z ])e 0 z dz z=∞ ∞ −i i= (ti −ti )z 2n−2m + τ˜2n+2(t +[z])τ˜2m(t −[z])e 0 z dz = 0 , (0.7) z=0 3 [α]:=(α, α2/2,α3/3,...). Pfaff τ-functions 5 This bilinear identity leads to different types of relations, involving nearest neighbors, like the “differential Fay identity”, {˜τ (t −[u]), τ˜ (t −[v])} 2n 2n −1 −1 + (u − v ) τ˜2n(t −[u])τ˜2n(t −[v]) −˜τ2n(t)τ˜2n(t −[u]−[v]) = uv(u − v)τ˜2n−2(t −[u]−[v])τ˜2n+2(t) , (0.8) and the Hirota bilinear equations4, ˜ 1 ˜ pk+ (D) − D Dk+ τ˜ n ·˜τ n = pk(D)τ˜ n+ ·˜τ n− . (0.9) 4 2 1 3 2 2 2 2 2 2 For k = 0, this equation can be viewed as an inductive expression of τ˜2n+2 in terms of τ˜2n−2 and derivatives of τ˜2n. In analogy with the 2-Toda or KP theory, we establish Fay identities for the Pfaff τ˜-functions. In this instance, they involve Pfaffians rather than determinants: (zj − zi)τ˜2n−2(t −[zi]−[zj ]) Pf τ˜ (t) 2n 1≤i,j≤2k τ˜ t − 2k [z ] 2n−2k i=1 i = ∆(z) , (0.10) τ˜2n(t) In particular for k = 2, (z1 − z0)(z2 − z3)τ˜2n(t −[z0]−[z1])τ˜2n(t −[z2]−[z3]) 1→2→3→1 =− (zi − zj ) τ˜2n+2(t)τ˜2n−2(t −[z0]−[z1]−[z2]−[z3]) 0≤i<j≤3 which has a useful interpretation in terms of the Pfaffians of Christoffel-Darboux kernels of the form Kn(µ, λ) n−1 ∞ i i i= ti (µ +λ ) = e 1 q2k(t, λ)q2k+1(t, µ) − q2k(t, µ)q2k+1(t, λ) , (0.11) k=0 4 ˜ ˜ ∂ = (∂/∂t1,(1/2)∂/∂t2,(1/3)∂/∂t3,...), D = (D1,(1/2)D2,(1/3)D3,...) is the corre- P(D)f˜ · g := P(∂/∂y ,( / )∂/∂y ,...)f(t + y)g(t − y)| sponding Hirota symbol: 1 1 2 2 y=0, and p ∞ p (t)zk := ( ∞ t zi) k are the elementary Schur functions: k=0 k exp i=1 i . 6 M. Adler et al. where the qm(t, λ) form the system of skew-orthogonal polynomials, mentioned above (see [7]). This is the analogue of the Christoffel-Darboux kernel for or- thogonal polynomials.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    54 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us