Maxwell's Equations

Maxwell's Equations

Microwave Measurement and Beam Instrumentation Course at Jefferson Laboratory, January 15-26th 2018 Lecture: Maxwell’s Equations F. Marhauser Monday, January 15, 2018 This Lecture - This lecture provides theoretical basics useful for follow-up lectures on resonators and waveguides - Introduction to Maxwell’s Equations • Sources of electromagnetic fields • Differential form of Maxwell’s equation • Stokes’ and Gauss’ law to derive integral form of Maxwell’s equation • Some clarifications on all four equations • Time-varying fields wave equation • Example: Plane wave - Phase and Group Velocity - Wave impedance 2 Maxwell’s Equations A dynamical theory of the electromagnetic field James Clerk Maxwell, F. R. S. Philosophical Transactions of the Royal Society of London, 1865 155, 459-512, published 1 January 1865 Maxwell’s Equations - Originally there were 20 equations Taken from Longair, M. 2015 ‘...a paper ...I hold to be great guns’: a commentary on Maxwell (1865) ‘A dynamical theory of the electromagnetic field’. Phil. Trans. R. Soc. A 373: 20140473. Sources of Electromagnetic Fields - Electromagnetic fields arise from 2 sources: • Electrical charge (Q) Stationary charge creates electric field 푑푄 • Electrical current (퐼 = ) 푑푡 Moving charge creates magnetic field - Typically charge and current densities are utilized in Maxwell’s equations to quantify the effects of fields: 푑푄 • ρ = electric charge density – total electric charge per unit volume V 푑푉 (or 푄 = 푉 휌 푑푉) 퐼(푆) • 퐽 = lim electric current density – total electric current per unit area S 푆→0 푆 (or 퐼 = 푆 퐽 ∙ 푑푆) - If either the magnetic or electrical fields vary in time, both fields are coupled and the resulting fields follow Maxwell’s equations 5 Maxwell’s Equations Differential Form 휌 (1) 훻 ∙ 퐷 = 휌 or 훻 ∙ 퐸 = Gauss’s law 휖0 (2) 훻 ∙ 퐵 = 0 Gauss’s law for magnetism 휕퐵 (3) 훻 × 퐸 = − Faraday’s law of induction 휕푡 휕퐷 휕퐸 (4) 훻 × 퐻 = 퐽 + or 훻 × 퐵 = 휇 퐽 + 휇 휖 Ampère’s law 휕푡 0 0 0 휕푡 - Together with the Lorentz force these equations 퐹 = 푞(퐸 + v × 퐵) Lorentz Force form the basic of the classic electromagnetism ρ = electric charge density (As/m3) 퐷 = 휖 퐸 0 J = electric current density (A/m2) 휖0=permittivity of free space D = electric flux density/displacement field (Unit: As/m2) E = electric field intensity (Unit: V/m) 퐵 = 휇0퐻 H = magnetic field intensity (Unit: A/m) µ0=permeability of free space B = magnetic flux density (Unit: Tesla=Vs/m2) 6 Divergence (Gauss’) Theorem { div (훻 ∙ 퐹 ) 푑푉 = (퐹 ∙ 푛 )푑푆 = 퐹 ∙ 푑푆 푉 푆 푆 Integral of divergence of vector field (퐹 ) over volume V inside closed boundary S equals outward flux of vector field (퐹 ) through closed surface S 휕 휕 휕 휕퐹 휕퐹푦 휕퐹 훻 ∙ 퐹 = , , ∙ 퐹 , 퐹 , 퐹 = 푥 + + 푧 휕푥 휕푦 휕푧 푥 푦 푧 휕푥 휕푦 휕푧 7 Curl (Stokes’) Theorem { curl (훻 × 퐹 ) · 푑푆 = ((훻 × 퐹 ) ∙ 푛 )푑푆 = 퐹 ∙ 푑푙 푆 푆 휕푆 Integral of curl of vector field (퐹 ) over surface S equals line integral of vector field (퐹 ) over closed boundary dS defined by surface S 푖 푗 푘 휕퐹 휕퐹 휕퐹 휕퐹 휕퐹 휕퐹 훻 × 퐹 = 휕 휕 휕 = 푧 − 푦 푖 + 푥 − 푧 푗+ 푦 − 푥 푘 휕푥 휕푦 휕푧 휕푦 휕푧 휕푧 휕푥 휕푧 휕푦 퐹푥 퐹푦 퐹푧 휕퐹푦(푥, 푦) 휕퐹 (푥, 푦) 풆. 품. : 푭 = ퟎ → 훻 × 퐹 = − 푥 푘 풛 휕푥 휕푦 Curl vector is perpendicular to surface S ; 푘 = 푛 휕퐹푦(푥, 푦) 휕퐹 (푥, 푦) ( − 푥 ) 푑푆 = 퐹 푑푥 + 퐹 푑푦 Green’s Theorem 휕푥 휕푦 푥 푦 푆 휕푆 8 Example: Curl (Stokes’) Theorem curl { (훻 × 퐹 ) · 푑푆 = ((훻 × 퐹 ) ∙ 푛 )푑푆 = 퐹 ∙ 푑푙 푆 푆 휕푆 Integral of curl of vector field (퐹 ) over surface S equals line integral of vector field (퐹 ) over closed boundary dS defined by surface S 9 Example: Curl (Stokes) Theorem curl { (훻 × 퐹 ) · 푑푆 = ((훻 × 퐹 ) ∙ 푛 )푑푆 = 퐹 ∙ 푑푙 푆 푆 휕푆 Integral of curl of vector field (퐹 ) over surface S equals line integral of vector field (퐹 ) over closed boundary dS defined by surface S Example: Closed line integrals of various vector fields No curl Some curl Stronger curl No net curl 10 Maxwell’s Equations Differential Form Integral Form 훻 ∙ 퐷 = 휌 퐷 ∙ 푑푆 = 휌 푑푉 (훻 ∙ 퐹 ) 푑푉 = 퐹 ∙ 푑푆 Gauss’s law 푉 푆 푆 푉 } Gauss’ theorem 훻 ∙ 퐵 = 0 퐵 ∙ 푑푆 = 0 Gauss’s law for magnetism 푆 휕퐵 휕퐵 Faraday’s law of induction 훻 × 퐸 = − 퐸 ∙ 푑푙 = − ∙ 푑푆 휕푡 (훻 × 퐹 ) · 푑푆 = 퐹 ∙ 푑푙 휕푡 푆 휕푆 휕푆 푆 휕퐷 } Stokes’ theorem 휕퐷 Ampère’s law 훻 × 퐻 = 퐽 + 퐻 ∙ 푑푙 = 퐽 ∙ 푑푆 + ∙ 푑푆 휕푡 휕푡 휕푆 푆 푆 ρ = electric charge density (C/m3=As/m3) 퐷 = 휖0퐸 J = electric current density (A/m2) 휖0=permittivity of free space D = electric flux density/displacement field (Unit: As/m2) E = electric field intensity (Unit: V/m) 퐵 = 휇0퐻 H = magnetic field intensity (Unit: A/m) 2 µ0=permeability of free space B = magnetic flux density (Unit: Tesla=Vs/m ) 11 Electric Flux & 1st Maxwell Equation Definition of Electric Flux Gauss: Integration over closed surface 1. Uniform field 퐸 = 퐸 ∙ 푆 = 퐸 ∙ 푛 푆 = 퐸 ∙ 푆 ∙ 푐표푠 휃 [푉푚] 휖0퐸 ∙ 푑푆 = 휖0 푬 = 휌 푑푉 = 푞푖 - angle between field and normal vector 푆 푉 푖 to surface matters 푖 푞푖 ; 퐷 = 휖0퐸 퐸= 휖0 Example: Metallic plate, assume only surface charges on one side 2. Non-Uniform field 2 푑퐸 = 퐸 ∙ 푑푆 = 퐸 ∙ 푛 푑푆 휖0퐸 ∙ 푑푆 = 휖0 퐸 휋푅 = 푞푖 = 푄푐푖푟푐푙푒 푆 푖 ; 푐푟푐푙푒 푆 = 휋푅2 퐸 = 퐸 ∙ 푑푆 푄푐푖푟푐푙푒 퐸 = 2 푆 휖0휋푅 12 Electric Flux & 1st Maxwell Equation Definition of Electric Flux Gauss: Integration over closed surface 1. Uniform field 퐸 = 퐸 ∙ 푆 = 퐸 ∙ 푛 푆 = 퐸 ∙ 푆 ∙ 푐표푠 휃 [푉푚] 휖0퐸 ∙ 푑푆 = 휖0 푬 = 휌 푑푉 = 푞푖 - angle between field and normal vector 푆 푉 푖 to surface matters 푖 푞푖 ; 퐷 = 휖0퐸 퐸= 휖0 Example: Capacitor 2. Non-Uniform field 퐸 = 0 퐸 = 0 푑퐸 = 퐸 ∙ 푑푆 = 퐸 ∙ 푛 푑푆 푄푐푖푟푐푙푒 −푄푐푖푟푐푙푒 퐸= + = 0 퐸 = 퐸 ∙ 푑푆 휖0 휖0 푆 13 Electric Flux & 1st Maxwell Equation Examples of non-uniform fields Point charge Q Add charges 휖0퐸 ∙ 푑푆 = 휌 푑푉 = 푞푖 = 푄푠푝ℎ푒푟푒 푆 푉 푖 퐸 퐸 Integration of over closed spherical surface S 2 휖0퐸 ∙ 푑푆 = 휖0푬(푟)4휋푟 = 푄 푆 푞 푞 −푞 3푞 푄 ; 푠푝ℎ푒푟푒 푆 = 4휋푟2 푖 푖 푠푝ℎ푒푟푒 pointing out radially 퐸= = + = 0 퐸= = 휖0 휖0 휖0 휖0 휖0 Principle of Superposition holds: 푄 푬(푟) = ∙ 풓 2 1 푞1 푞2 푞3 휖04휋푟 퐸(푟) = 2 푟푐 1+ 2 푟푐2 + 2 푟푐3 + ⋯ 휖04휋 푟푐1 − 푟 푟푐2 − 푟 푟푐3 − 푟 14 Magnetic Flux & 2nd Maxwell Equation Definition of Magnetic Flux Gauss: Integration over closed surface Uniform field = 퐵 ∙ 푆 = 퐵 ∙ 푛 푆 = 퐵 ∙ 푆 푐표푠 휃 [푊푏 = 푉푠] 퐵 퐵 ∙ 푑푆 = 0 푀= 0 푆 - There are no magnetic monopoles - All magnetic field lines form loops 퐵 퐵 Non-Uniform field 푑퐵 = 퐵 ∙ 푑푆 = 퐵 ∙ 푛 푑푆 Closed surface: What about this case? Flux lines out = flux lines in Flux lines out > flux lines in ? = 퐵 ∙ 푑푆 퐵 - No. In violation of 2nd Maxwell’s law, i.e. 푆 integration over closed surface, no holes allowed - Also: One cannot split magnets into separate poles, i.e. there always will be a 15 North and South pole Magnetic Flux & 3rd Maxwell Equation If integration path is not changing in time 푑 푑퐵 퐸 ∙ 푑푙 = − 퐵 ∙ 푑푆 = − ; = 퐵 ∙ 푑푆 푑푡 푑푡 퐵 푆 휕푆 푆 - Change of magnetic flux induces an electric field along a closed loop - Note: Integral of electrical field over closed loop may be non-zero, when induced by a time-varying magnetic field - Electromotive force (EMF) Ɛ: 퐵(푡 = 푡1) Ɛ = 퐸 ∙ 푑푙 [푉] 휕푆 - Ɛ equivalent to energy per unit charge traveling once around loop Faraday’s law of induction 16 Magnetic Flux & 3rd Maxwell Equation If integration path is not changing in time 푑 푑퐵 퐸 ∙ 푑푙 = − 퐵 ∙ 푑푆 = − ; = 퐵 ∙ 푑푆 푑푡 푑푡 퐵 푆 휕푆 푆 - Change of magnetic flux induces an electric field along a closed loop - Note: Integral of electrical field over closed loop may be non-zero, when induced by a time-varying magnetic field - Electromotive force (EMF) Ɛ: 퐵(푡) Ɛ = 퐸 ∙ 푑푙 [푉] 휕푆 - Ɛ equivalent to energy per unit charge traveling once around loop - or voltage measured at end of open loop Faraday’s law of induction 17 Ampère's (circuital) Law or 4th Maxwell Equation Right hand side of equation: - Note that 퐽 ∙ 푑푆 is a surface integral, but S may 휕퐷 푆 퐻 ∙ 푑푙 = 퐽 ∙ 푑푆 + ∙ 푑푆 have arbitrary shape as long as ∂S is its closed 휕푡 휕푆 푆 푆 boundary { conduction current I 퐽 ∙ 푑푆 = 퐼 Example: 퐵 푆 - What if there is a capacitor? Left hand side of equation: - While current is still be flowing (charging capacitor): 퐵 ∙ 푑푙 = 푩 푟 2휋푟 = 휇0퐼 푑푄 휕푆 퐽 ∙ 푑푆 = 퐼 = tangential to a circle at any 푑푡 푆 ; 퐵 = 휇0퐻 radius r of integration ; 푐푟푐푢푚푓푒푟푒푛푐푒 퐶 = 2휋푟 휇 퐼 |푩 푟 | = 0 2휋푟 18 Ampère's (circuital) Law or 4th Maxwell Equation - But one may also place integration surface S between plates current does not flow through surface here 휕퐷 퐻 ∙ 푑푙 = 퐽 ∙ 푑푆 + ∙ 푑푆 휕푡 휕푆 푆 푆 퐽 ∙ 푑푆 = 0 { 푆 conduction current I 푤ℎ푙푒 퐵 ≠ 0 ? Example: 퐵 - This is when the displacement field is required as a corrective 2nd source term for the magnetic fields 휕퐷 푑 푑푄 푑 ∙ 푑푆 = 퐷 ∙ 푑푆 = = 퐼 = 휖 퐸 Left hand side of equation: 휕푡 푑푡 푑푡 퐷 0 푑푡 푆 푆 ; Gauss’s law { 퐵 ∙ 푑푙 = 푩 푟 2휋푟 = 휇0퐼 displacement current I 휕푆 푑퐸 tangential to a circle at any 퐻 ∙ 푑푙 = 퐼 + 휖0 ; 퐵 = 휇0퐻 radius r of integration 푑푡 휕푆 ; 푐푟푐푢푚푓푒푟푒푛푐푒 퐶 = 2휋푟 퐸 휇0퐼 |푩 푟 | = 휇 퐼 2휋푟 |푩 푟 | = 0 퐷 19 퐵 2휋푟 Presence of Resistive Material 휕퐷 퐻 ∙ 푑푙 = 퐽 ∙ 푑푆 + ∙ 푑푆 휕푡 휕푆 푆 푆 { { conduction current displacement current - In resistive materials the current density J is proportional to the electric field 1 퐽 = 퐸 = 퐸 with the electric conductivity (1/(Ω·m) or S/m), respectively 휌 =1/ the electric resistivity (Ω·m) - Generally (ω, T) is a function of frequency and temperature 20 퐵 Time-Varying E-Field in Free Space - Assume charge-free, homogeneous, linear, and isotropic medium - We can derive a wave equation: 휕퐵 훻 × 퐸 = − ;Faraday’s law of induction 휕푡 휕퐵 휕 훻 × 훻 × 퐸 = −훻 × = − 훻 × 퐵 ; || curl 휕푡 휕푡 훻2= Δ = Laplace operator 휕 휕퐷 훻 훻 ∙ 퐸 − 훻2퐸 = −휇 퐽 + ; curl of curl 훻 × 훻 × 퐴 = 훻 훻 ∙ 퐴 − 훻2퐴 휕푡 휕푡 휕퐷 ; 훻 × 퐻 = 퐽 + ; Ampère’s law 휕푡 휌 휕 휕퐸 훻 − 훻2퐸 = −휇 퐸 + 휖 휖0 휕푡 휕푡 ; Gauss’s law ; 퐽 = 퐸 휕2퐸 훻2퐸 − 휇휖 = 0 Homogeneous wave equation 휕푡2 ; we presumed no charge 21 Time-Varying B-Field in Free Space - Assume charge-free, homogeneous, linear, and isotropic

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us