TECHNISCHE UNIVERSITÄT MÜNCHEN Institut für Diabetes und Krebs, Helmholtz Zentrum München & Chair for Metabolic Programming, TUM School of Life Sciences Mechanisms of inflammatory gene repression by the Glucocorticoid Receptor Laura Escoter Torres Vollständiger Abdruck der von der Fakultät TUM School of Life Sciences der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vositzende: Prof. Dr. Ilona Grunwald Kadow Prüfende/-r der Dissertation: 1. Prof. Dr. Nina Henriette Uhlenhaut 2. Prof. Dr. Dirk Haller 3. Prof. Dr. Roland Schüle Die Dissertation wurde am 24.06.2020 bei der Technischen Universität München eingereicht und durch die Fakultät TUM School of Life Sciences am 16.11.2020 angenommen. Acknowledgements First, I would like to thank my supervisor, Prof. Dr. N. Henriette Uhlenhaut, for her support and guidance through each stage of this project. I specially appreciate the time, effort, ideas and feedback, which has greatly contributed to my professional and scientific development. Also, I value the generous funding from the ERC grant allocated to Prof. Uhlenhaut. I am grateful to Prof. Dirk Haller for his support and scientific advice during our annual meetings discussing the progress of my PhD project. My special thanks go to Prof. Dr. Matthias Tschöp, director of the Institute for Diabetes and Obesity, and Prof. Dr. Stephan Herzig, director of the Institute for Diabetes and Cancer, for their input on this project as well as for leading two great international dynamic institutes with very talented scientists. I would like to acknowledge Dr. Franziska Greulich for her assistance with NGS analysis and our various scientific discussions that significantly contributed to this work. Also, a strong thank you to Dr. Michael Wierer for the successful collaboration with the proteomics analysis. I am deeply thankful to all the members of the MolEndo group, IDO and IDC for their help and support. I would like to acknowledge Dr. Omar García González, Michaël Hubert and Dr. Céline Jouffe specially for their crucial support and for making my time in the lab an unforgettable experience. Also, I appreciate the valuable scientific remarks from Dr. Manuel Gil Lozano. Similarly, my thanks to all team members: Kostas, Katerina, Teresa, Büsra, Afzal, Ken, Charlotte, Cinzia, Kinga, Kristina, Fabiana, Ashfaq, Suhail, Sybille and Ivonne for creating a vibrant, challenging and interactive professional environment. Also, thank you to Kei, Laurent, Caterina, Isabelle, Serge, Roger and Maria from the Nestlé Institute of Health Sciences in Lausanne to motivate me to pursue a PhD. Lastly, but most important, a big thank you to my husband Christian Kerecsényi, my family and friends for their unconditional love, support and motivation. Thank you for always being there for me. i Table of contents Abstract…………………………………………………………………………………........iv Zusammenfassung……………………………………………………………………….….v Abbreviations……………………………………………………………………….………..vi Index of Tables……………………………………………………………………….……..viii Index of Figures………………………………………………………………...……….......ix 1. Introduction ............................................................................................................ 1 1.1 Glucocorticoid signalling in health and disease ..................................................... 1 1.1.1 HPA axis and physiological roles of glucocorticoids ......................................... 1 1.1.2 Clinical use and side effects of glucocorticoids ................................................ 3 1.2 Immunomodulation by the glucocorticoid receptor ................................................ 5 1.2.1 The glucocorticoid receptor .............................................................................. 5 1.2.2 Mechanisms of GR-mediated gene regulation ................................................. 8 1.2.2.1 Genomic actions of the GR ........................................................................... 8 1.2.2.2 Non-genomic actions of GR ........................................................................ 12 1.2.2.3 Tissue specificity and multimerization of GR ............................................... 12 1.2.3 Glucocorticoid action on macrophages and target genes .............................. 13 1.3 Mechanistic insights into immunomodulation from GR mutants .......................... 14 2. Scope of the thesis .............................................................................................. 17 3. Material and methods .......................................................................................... 18 3.1 Chemicals, commercial kits, antibodies and primers ........................................... 18 3.2 Mice. .................................................................................................................... 23 3.3 Primary cell cultures ............................................................................................ 24 3.3.1 Foetal liver macrophages ................................................................................. 24 3.3.2 Mouse embryonic fibroblasts ............................................................................ 24 3.4 Immortalised cell lines ......................................................................................... 25 3.5 Molecular biology techniques .............................................................................. 25 3.5.1 Chromatin Immunoprecipitation coupled to quantitative PCR ........................ 25 3.5.2 Co-Immunoprecipitation ................................................................................. 25 3.5.3 Electrophoretic mobility shift assay ................................................................ 26 3.5.4 Immunohistochemistry .................................................................................... 26 3.5.5 Luciferase assays ........................................................................................... 27 3.5.6 RNA isolation, complementary DNA synthesis and real-time-quantitative PCR…………………………………………………………….........................................27 3.5.7 Small interfering RNA knock down ................................................................. 27 3.5.8 Western blot ................................................................................................... 28 3.6 Histology .............................................................................................................. 28 3.7 Chromatin immunoprecipitation coupled to mass spectrometry .......................... 28 3.8 Next generation sequencing techniques ............................................................. 29 3.8.1 Chromatin immunoprecipitation-sequencing and data analysis ..................... 29 3.8.2 RNA-sequencing and data analysis ............................................................... 30 3.9 Statistical analysis ............................................................................................... 31 3.10 Contribution from collaborations ........................................................................ 31 4. Results .................................................................................................................. 32 4.1 DNA binding by GR is required for survival ......................................................... 32 4.1.1 GRΔZn mouse line generation ......................................................................... 32 4.1.2 GRΔZn mice die due to respiratory failure and resemble the GR null phenotype...................................................................................................................34 4.1.3 GRΔZn mRNA, protein and phosphorylation levels are unaffected .................. 35 4.1.4 GR nuclear translocation is unaffected in GRΔZn ............................................ 37 4.2 Non-genomic actions of GR ................................................................................ 38 4.3 Tethered binding sites are found near inflammatory genes in GRΔZn MEFs ....... 39 4.3.1 Genome-wide binding profiles of GR wild type and GRΔZn in MEFs ............... 39 4.3.2 Examples of GR binding nearby target genes in wild type and GRΔZn MEFs . 40 4.3.3 Motif enrichment in GR ChIP-Seq peaks ........................................................ 43 4.3.4 Gene ontology for genes in the vicinity of GR ChIP peaks ............................. 44 4.3.5 Distance distribution of GR ChIP peaks to TSS ............................................. 45 4.3.6 ChIP-Seq validation and co-immunoprecipitation of GR and p65 .................. 46 4.4 Target gene regulation by GR requires DNA binding .......................................... 48 4.4.1 RNA-Seq shows no target gene regulation by GRΔZn in response to Dex ........ 48 4.4.2 Genes in the vicinity of GR tethered sites are not regulated by GRΔZn and are enriched near repressed genes ................................................................................. 51 4.4.3 Basal gene expression profile and PCA analysis ........................................... 52 4.4.4 Validation of GR target genes modulation ...................................................... 53 ii 4.4.5 MEFs treated with TPA show no effect on target gene regulation ................. 54 4.4.6 Time series treatment with Dex alone or LPS and Dex in MEFs .................... 55 4.5 GR tethering can be detected in various Dex concentrations ............................. 56 4.6 GR binding in embryonic liver and
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages127 Page
-
File Size-