Fourier Optics

Fourier Optics

Phys 322 Chapter 11 Lecture 33 Fourier Optics Optical applications: Linear optical system Fraunhofer diffraction Other applications Optical application: linear system Function f(y,z) passes through an optical system and is transformed into g(Y,Z): gY ,Z L f y, z The system is linear if: • multiplying f(y,z) with constant a produces output ag(Y,Z) L af y, z aL f y, z • when the input is a sum of two (or more) functions, f1 (y,z) +f2 (y,z), the output would be g1 (y,z) +g2 (y,z), where g1 and g2 are outputs of f1 and f2, respectively L f1y, z f2 y, z L f1y, zL f2 y, z Optical application: linear system gY ,Z L f y, z Linear system is space invariant if it possesses the property of stationarity. changing the position of input merely changes the position of output without altering its functional form Idea behind: at each point in image plane g(Y,Z) is a linear superposition of outputs arising from each of the individual points on the object f(y,z) Optical application: linear system gY ,Z L f y, z f y, z f y', z' y' y z'z dy'dz' gY ,Z L f y', z' y'y z'z dy'dz' gY ,Z f y', z' L y'y z'z dy'dz' Impulse response Optical application: linear system g Y ,Z f y', z' L y'y z'z dy'dz' yz Impulse response: gY ,Z L f y, z L y' y z'z image of a single object point at (y’,z’) If we knew the impulse response of the system, we could construct the image g of any object f. Optical application: linear system Example: lens system Image: upright, same size I0(y,z) - irradiance in object plane Image blur due to diffraction etc: S y, z,Y ,Z 2f point spread function 2f Image intensity due to one element radiant flux I0(y,z)dydz dIi Y ,Z S y, z,Y ,Z I0 y, zdydz If the object emits incoherent light, intensities add up I Y ,Z S y, z,Y ,Z I y, z dydz i 0 Optical application: linear system I Y ,Z S y, z,Y ,Z I y, z dydz i 0 Meaning of S Suppose object is just a single luminous point at y0, z0 I Y ,Z S y, z,Y ,Z A y y z z dydz i 0 0 A = 1 W/m2 Ii Y ,Z AS y0, z0,Y ,Z Ideal system will show far-field diffraction, Airy distribution Optical application: linear system dIi Y ,Z AS y0, z0,Y,Z Space invariance: Spread function is the same for any x0,y0 (reality: spread function varies slightly with position) for MT=1 S y, z,Y ,Z S Y y,Z z For source in center:S Y ,Z I Y ,Z I y, z S Y y,Z z dydz i o convolution integral Linear systems summary For simplicity, considering the case 1) incoherent light, and 2) MT = +1. The flux density arriving at the image point from dydz is dIi (Y, Z) S(y, z;Y, Z)I0 (y, z)dydz Point-spread function z Z I0 (y,z) Ii (Y,Z) y Y Ii (Y, Z) S(y, z;Y, Z)I0 (y, z)dydz Ii (Y, Z) S(y, z;Y, Z)I0 (y, z)dydz z Z Ii (Y,Z) Point-spread function I0 (y,z) Example: I0 (y, z) A (y y0 ) (z z0 ) y Y Ii (Y, Z) A (y y0 ) (z z0 )S(y, z;Y, Z)dydz AS(y0 , z0 ;Y, Z) The point-spread function is the irradiance produced by the system with an input point source. In the diffraction-limited case with no aberration, the point-spread function is the Airy distribution function. The image is the superposition of the point-spread function, weighted by the source radiant fluxes. Ii (Y, Z) S(y, z;Y, Z)I0 (y, z)dydz z I (y,z) Z 0 Ii (Y,Z) I0 (y, z) Ai (y yi ) (z zi ) i y Y Ii (Y, Z) Ai S(yi , zi ;Y, Z) i Transfer functions for characterization of optical systems: I (,Y Z ) S ( Y y , Z z ) I (,) y z dydz i 0 Iyz0 (,) Syz (,) YYY{(,IYZi )} {(,)} I0 yz {(,)} Syz Y {(,)}Syz Tk (YZ , k ) Optical transfer function T (OTF) Modulation transfer function M (MTF) M (,kkYZ )exp(, i kk YZ ) Phase transfer function (PTF) We use these functions to characterize the quality of an optical system and to reconstruct the original (unknown) object. Optical application: Fraunhofer diffraction y Y Light r P (screen) x Z z Each area dydz is a source of spherical waves: E y, zdydz i tkr Source strength per dE A e yz R unit area E y, zei y,zdydz dE A eik YyZz / R R aperture function dE A y, zeikYyZz/ Rdydz EY ,Z A y, z eikYyZz / Rdydz Optical application: Fraunhofer diffraction y Y Light r P (screen) x Substitute: Z kY kY / R z k kZ / R EY ,Z A y, z eikYyZz / Rdxdz Z For each point Y,Z E k ,k A y, z eikY ykZ z dydz Y Z there is corresponding spatial frequency The field distribution in the Fraunhofer diffraction is the Fourier transform of the field distribution across the aperture (aperture function) E kkYZ,, Y T yz 1 The inverse transform:T yz,, Y EkYZ k Optical application: single slit y Y E k ,k A y, z eikY ykZ z dydz Y Z Light EkY ,kZ F A y, z R k kY / R k kZ / R Z Y Z z A 0 when z b / 2 A y, z 0 when z b / 2 b/ 2 E k F A z A z eikZ zdz A eikZ zdz Z 0 b/ 2 k b Ek A bsinc z k kZ / R k sin Z 0 2 Z Got the same result Optical application: double slit Single A(x) A(x) Double slit slit A0 A0 E(k) E(k) Phys 322 Chapter 11 Lecture 33 Fourier Optics Other applications: Time and frequency domains FTIR and many more Time and frequency domain E(t)=f(t) - electric field depends on time (time domain) Energy flux ~|E(t)|2 = |f(t)|2 2 2 Total emitted energy: f t dt f t f t f *t F()=F {f(t)} Fourier transform (frequency domain) |F()|2 = measure of energy per unit frequency interval 2 1 * it 1 * it f t dt f t F e ddt F f t e dtd 2 2 2 2 1 2 |F()| - f t dt F d 2 power spectrum or Spectral energy Parseval’s formula distribution Emission spectrum of excited atoms/molecules Emission intensity is proportional to the number h h of molecules in excited state N dN N N N et N et / dt 0 0 t / rate of transition Emission intensity: I I0e for t0 (damping constant) t / 2 Et E0e cos0t = 1/ = lifetime F E et / 2 cos t eitdt 0 0 0 2 2 2 E0 / 4 F 2 2 2 0 / 4 Lorentzian profile full width at half maximum: fwhm = 0 natural linewidth Example problem: An excited state lifetime of a chlorophyll molecule is 5 ns. What is the natural linewidth of its emission spectrum, if transition maximum occurs at 670 nm. Express linewidth in nm fwhm = = 1/ = 1/(5 ns) = 2×1010 Hz c c 2 2 2 2.81015 Hz 0 0 0 0 0 0 c c c fwhm 2 2 2 2 0 / 2 0 / 2 0 -3 fwhm = 4.9×10 nm 0 Reality: fwhm ~ 10 nm - inhomogeneus broadening FTIR spectrometer (Fourier Transform InfraRed) IR detector What would be recorded if IR source Movable emits a single wavelength? mirror IR source 2 I A cos Mirror A cos c What if there are two wavelengths? N I Ai i cosi i1 c I A cos d c FTIR spectrometer: qualitative approach IR detector I A cos d Movable c mirror IR source Mirror Measure I() FT gives spectrum:AI Y FTIR spectrometer IR detector No sample Sample Movable mirror IR source Mirror With sample Transmittance spectrum of a sample (polystyrene film) FTIR formal math: Autocorrelation IR detector Electric field at detector: Movable mirror Ed t E t Et IR source / c Measure intensity averaged in time: Mirror I E t 2 E t E t 2 dt d I E 2 t dt 2 E t E t dt E 2 t dt I 2 E 2 t dt 2 E t E t dt Autocorrelation Constant background Autocorrelation c f t f t dt ff 2 Wiener-Khinchine theorem: Y cFff IR detector Movable I E t E t dt mirror 2 IR source Y IF Mirror c f t h t dt f h Cross-correlation: hf Extraction of signal from noise Sine function “hidden” in noise. Autocorrelation of white noise is 0. Spectral grating. E(t) - electric field depends on time (time domain) 1 Et F eixd 2 F E t eixdx 2 I() I() Isin I F m a sin a Grating performs a Fourier transform - intensity distribution on screen is the Fourier image of the incoming time-dependent EM field Pulse shaping. it i Et Ite ESe EoutthtEt in Altering E(t) - will cause change in pulse shape and in spectrum EHEout in Altering E() - will cause change in spectrum and in pulse shape www.physics.gatech.edu/gcuo/lectures/UFO13Pulseshaping.ppt Pulse shaping: optical Fourier transform S() S’() H( ) x ()x grating grating f f ff f f John Heritage, UC Davis Fourier Andrew Weiner, Purdue Transform Plane How it works: The grating disperses the light, mapping color onto angle.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us