The Stille Reaction Chem 115

The Stille Reaction Chem 115

Myers The Stille Reaction Chem 115 Recent Reviews: • Oxidative addition initally gives a cis complex that can rapidly isomerize to the trans isomer: Williams, R. Org. Synth. 2011, 88, 197–201. Selig, R.; Schollmeyer, D.; Albrecht, W.; Laufer, S. Tetrahedron 2011, 67, 9204–9213. R L PdL2 fast Tietze, L. F.; Dufert, A. Pure Appl. Chem., 2010, 82, 1375–1392. R–I L Pd I R Pd I L L Generalized Cross-Coupling: cis trans R–X R'–M catalyst R–R' M–X Casado, A. L.; Espinet, P. Organometallics 1998, 17, 954–959. • !-hydride elimination can be a serious side reaction within alkyl palladium intermediates. This typically requires a syn coplanar alignment of hydride and palladium: Typically: • R and R' are sp2–hybridized • M = Sn, B, Zr, Zn • X = I, OSO2CF3, Br, Cl • catalyst = Pd (sometimes Ni) H Pd(II)L2X + HPd(II)L2X Mechanism: • A specific example: • Oxidative-addition and reductive-elimination steps occur with retention of configuration for 2 Pd catalyst sp -hybridized substrates. p-Tol–Br + n-Bu3Sn–Ph p-Tol–Ph + n-Bu3Sn–Br Pd(II) • Transmetalation is proposed to be the rate-determining step with most substrates. • Relative order of ligand transfer from Sn: p-Tol–Ph Pd(0)Ln p-Tol–Br alkynyl > alkenyl > aryl > allyl = benzyl > "-alkoxyalkyl > alkyl reductive elimination oxidative addition • Electron-rich and sterically hindered aryl halides undergo slower oxidative addition and are often poor substrates as a result. p-Tol–Pd(II)Lm–Ph p-Tol–Pd(II)Lm–Br • Electron-poor stannanes undergo slower transmetallation and are often poor substrates as n-Bu Sn–Br n-Bu Sn–Ph 3 3 a result. transmetalation • Many functional groups are tolerated (e.g., CO2R, CN, OH, CHO). Andrew Haidle, Jeff Kohrt, Fan Liu 1 Myers The Stille Reaction Chem 115 Stille Reaction conditions: Cl • Catalyst: Commercially available Pd(II) or Pd(0) sources. Examples: Ph Ph N N Pd(PPh3)4 Pd(OAc)2 Pd2(dba)3 N Ph OCH3 N OCH3 O N Pd(OAc)2 (8 mol%) N OCH3 dba = 4 (24 mol%) F Ph Sn(n-Bu) dioxane F 3 N N microwave OCH 101 oC, 94% 3 • Ligand Additives: Sterically hindered, electron-rich ligands typically accelerate coupling. This catalyst system and microwave heating limited the formation of a destannylated byproduct. R Cy Selig, R.; Schollmeyer, D.; Wolfgang, A.; Saufer, S. Tetrahedron 2011, 67, 9204 - 9213 N P P Cy N R iPr iPr 2 N N R • Additives: CuI can increase the reaction rate by >10 : t-Bu t-Bu P Pd2(dba)3 (5 mol %) t-Bu I iPr PPh3 (20 mol %) n-Bu3Sn 1 tris-N-iso-butyl Ar-Cl 4 "X-Phos" 5 dioxane, 50 °C 2 N-iso-butyl-bis-N-benzyl Ar-Cl, Ar-Br mol % CuI relative rate 3 tris-N-benzyl Ar-Cl, Ar-Br, Ar-OTf, vinyl-Cl (leading references in examples below) 0 1 • Examples: 10 114 • The rate increase is attributed to the ability of CuI to scavenge free ligands; strong ligands in solution are known to inhibit the rate-limiting transmetalation step. Cl n-Bu3Sn Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905–5911. N Pd2(dba)3 (1.5 mol%) N 3 (3.5 mol%) • Stoichiometric Cu itself can sometimes mediate cross-coupling reactions under mild conditions, CsF, Dioxane, 110 oC without Pd: 97% O S Verkade, J.G.; Su, W.; Urgaonkar, S.; McLaughlin, P.A. J. Am. Chem. Soc. 2004, 126, 16433- CuO (1.5 equiv) CH3 O 16439 Sn(n-Bu) 3 CH3 O CH3 H C CH I CH Pre-milled 3 3 Cl 3 NMP, 23 °C, 15 min Cl Cl H3C CH3 Pd(OAc)2, 4 (1–2 mol%) 89% n-Bu Sn O MeO2C 3 CH3 MeO2C CH3 CsF, DME 80 oC, 96% NMP = N CH3 Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748-2749. Buchwald, S.L.; Naber, J.R. Adv. Synth. Catal. 2008, 350, 957-961 Andrew Haidle, Jeff Kohrt 2 Myers The Stille Reaction Chem 115 • Additives: fluoride can coordinate to the organotin reagent to form a hypervalent tin species that • A general Stille cross-coupling reaction employing aryl chlorides (which are more abundant and is believed to undergo transmetallation at a faster rate: less expensive than aryl iodides, aryl bromides, and aryl triflates) has been developed: OTf Pd2(dba)3 (1.5 mol %) OEt Cl OEt Pd(PPh3)4 (2 mol %) P(t-Bu)3 (6.0 mol %) n-Bu Sn 3 THF, 62 °C n-Bu3Sn CsF (2.2 equiv) CH3O CH3O t-Bu t-Bu dioxane, 100 °C Salt (equiv) relative rate yield 98% LiCl (3) 1 >95 Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. Engl. 1999, 38, 2411–2413. Bu4NF•H2O (1.3) 3 87 Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033–3040. • 1-substituted vinylstannanes can be poor substrates for the Stille reaction, probably due to steric effects. However, conditions have been discovered that provide the desired Stille coupling product • Examples: in excellent yields: OMOM (1.2 equiv) 10% Pd/C (5 mol%) n-Bu3Sn CH3 I LiF, Air OMOM O OH CH3 n-Bu Sn 3 O NMP, 140 ºC MeO ONf Pd(PPh ) (10 mol %) MeO 3 4 CH3 96% LiCl (6 equiv), CuCl (5 equiv) OH CH3 DMSO, 60 °C, 45 h Sajiki, H.; Yabe, Y.; Maegawa, T.; Monguchi, Y. Tetrahedron 2010, 66, 8654–8660 Nf = n-C4F9SO2 92% Han, X.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600–1605. • The following difficult coupling between an electron-rich aryl halide and electron-poor aryl stannane was accomplished using both copper and fluoride additives: • Examples of Stille coupling in drug discovery: O NO PdCl (2 mol%) 2 O N OMe Br NO2 2 O O H Pt-Bu (4 mol%) 3 N Br N OMe N N H N n-Bu Sn H MeO OMe 3 CuI (4 mol%), CsF H MeO OMe n-Bu3Sn DMF, 45 ºC 89% N N Pd(PPh3)2Cl2 (7 mol%) CuO, DMF, 130 ºC NC microwave, 89% NC Baldwin, J. E.; Mee, S. P.H.; Lee, V. Chem. Eur. J. 2005, 11, 3294–3308 Smallheer, J. M.; Quan, M. L.; Wang, S.; Bisacchi, G. S. Patent: US2004/220206 A1, 2004 Andrew Haidle, Jeff Kohrt 3 Myers The Stille Reaction Chem 115 • Industrial examples of the Stille Reaction in Large-Scale Process Chemistry • Many organostannanes are toxic and therefore tolerance for residual tin in pharmaceutical products Sn(n-Bu)3 Br O is extremely low. The following examples show methods by which residual tin can be minimized: N Et O N Et O S O S O S S O HN HN Pd(PPh ) (10 mol%) Cl 3 4 CH3 Cl CH3 MeO n-Bu4NCl, DMF MeO N S Pd(PPh3)4 (5 mol%) N S 110 ºC, 52% Sn(n-Bu)3 + I VEGFR2 Kinase Inhibitor N N o N DMF, 95 C N (672 g) (535 g) 67% Harris, P. A.; Cheung, M.; Hunter III, R. N.; Brown, M. L.; Veal, J. M.; Nolte, R. T.; Wang, L.; Liu, W.; Crosby, R. M.; Johnson, J. H.; Epperly, A. H.; Kumar, R.; Luttrell, D. K.; Stafford, J. A. J. Med. H N Chem. 2005 , 48, 1610–1619 CH3 H2N • Both AsPh3 and CuI are required to provide the coupled product in the following example: t-BuOH, DCE NC 100 ºC, 52% O NC Sn(CH3)3 O N H H N O N CO2Me H CH3 O NH I HN CO2Me CH3 NH N S Pd (dba) , AsPh H C CH 2 3 3 3 3 CuI, DMF N H C CH N 60 ºC, 55% 3 3 VEGFR Kinase Inhibitor Kohrt, J. T.; Filipski, K. J.; Rapundalo, S. T.; Cody, W. L.; Edmunds, J. J. Tetrahedron Lett. 2000, 41, 6041–6044 • The Stille reaction was the only reliable coupling method at > 50-g scale. • Note the presence of both OH and NH groups is tolerated under Stille coupling conditions: • Residual tin was minimized by slurring the coupling product in MTBE followed by recrystallization from ethyl acetate. SEM SEM Ragan, J. A.; Raggon, J. W.; Hill, P. D.; Jones, B. P.; McDermott, R. E.; Munchhof, M. J.; Marx, M. N N N Sn(n-Bu) N N 3 A.; Casavant, J. M.; Cooper, B. A.; Doty, J. L.; Lu, Y. Org. Proc. Res. Dev. 2003, 7, 676 - 683 N Br N S N NH S NH O CH3 Pd(PPh3)4, CuI O CH3 OH DMF, 80 ºC OH H3C H3C CH3 84% CH3 Hendricks, R. T.; Hermann, J. C.; Jaime-Figueroa, S.; Kondru, R. K.; Lou, Y.; Lynch, S. M.; Owens, T. D.; Soth, M.; Yee, C. W. Patent: WO2011/144585 Jeff Kohrt 4 Myers The Stille Reaction Chem 115 Alkyl Stille Coupling Reactions - sp2-sp3: TESO TESO • Initially, "alkyl" Stille couplings were mostly limited to the transfer of Me, Allyl and Benzyl groups. H H CH3 H H CH3 H C Tf2O H C • Coupling of higher n-alkyl groups was limited by !-hydride eliminations. This limitation has been 3 O 3 OTf N N overcome by innovations in the ligand and Pd sources. O TMP, DIEA O CO PNB CO PNB 2 3 2 2 • sp -sp coupling: alkyl-Br + vinyl-SnR3 used crude O [(allyl)PdCl] (2.5 mol%) n-Bu3Sn OH 2 O CH O CH3 + – 3 [HP(t-Bu)2Me] BF4 (15%) Pd(dba)2 (13 mol%) n-Bu Sn O + 3 P(2-furyl)3 (32 mol%) Me4NF, 3 Å MS Br ZnCl2, HMPA, 70 ºC THF, 23 ºC OTHP OTHP 53% Fu, G.C.; Menzel, K.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us