The Invariant Theory of Matrices

The Invariant Theory of Matrices

UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society The Invariant Theory of Matrices 10.1090/ulect/069 UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jordan S. Ellenberg Robert Guralnick William P. Minicozzi II (Chair) Tatiana Toro 2010 Mathematics Subject Classification. Primary 15A72, 14L99, 20G20, 20G05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-69 Library of Congress Cataloging-in-Publication Data Names: De Concini, Corrado, author. | Procesi, Claudio, author. Title: The invariant theory of matrices / Corrado De Concini, Claudio Procesi. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Univer- sity lecture series ; volume 69 | Includes bibliographical references and index. Identifiers: LCCN 2017041943 | ISBN 9781470441876 (alk. paper) Subjects: LCSH: Matrices. | Invariants. | AMS: Linear and multilinear algebra; matrix theory – Basic linear algebra – Vector and tensor algebra, theory of invariants. msc | Algebraic geometry – Algebraic groups – None of the above, but in this section. msc | Group theory and generalizations – Linear algebraic groups and related topics – Linear algebraic groups over the reals, the complexes, the quaternions. msc | Group theory and generalizations – Linear algebraic groups and related topics – Representation theory. msc Classification: LCC QA188 .D425 2017 | DDC 512.9/434–dc23 LC record available at https://lccn. loc.gov/2017041943 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes. c 2017 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 222120191817 Table of Contents Introductionandpreliminaries ......................... 1 1. Introduction.......................................... 2 2. Preliminaries......................................... 8 PartI. Theclassicaltheory........................... 19 3. Representationtheory................................... 20 4. Algebraswithtrace..................................... 28 PartII. Quasi-hereditaryalgebras...................... 39 5. Modules............................................. 40 6. Goodfiltrationsandquasi-hereditaryalgebras.................. 43 PartIII. TheSchuralgebra........................... 49 7. TheSchuralgebra...................................... 50 8. Doubletableaux....................................... 51 9. ModulesfortheSchuralgebra............................. 62 10. Rational GL(m)-modules................................ 75 11. Tensorproducts...................................... 78 PartIV. Matrixfunctionsandinvariants................. 87 12. Areductionforinvariantsofseveralmatrices ................. 88 13. Polarizationandspecialization............................ 91 14. Exteriorproducts..................................... 95 15. Matrixfunctionsandinvariants........................... 99 PartV. Relations.................................. 107 16. Relations...........................................108 17. Describing Km .......................................110 18. Km versus K˜m .......................................118 PartVI. TheSchuralgebraofafreealgebra............... 131 19. Preliminaryfacts .....................................132 20. TheSchuralgebraofthefreealgebra.......................135 Bibliography..............................................145 GeneralIndex.............................................149 SymbolIndex..............................................151 v Bibliography [1]E.Aljadeff,A.Giambruno,C.Procesi,A.Regev,Rings with polynomial identities and finite dimensional representations of algebras, book in preparation. [2] S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 8 (1979/80), no. 3, 177–182, DOI 10.1080/03081088008817315. MR560557 [3] H. Aslaksen, E.-C. Tan, and C.-b. Zhu, Invariant theory of special orthogonal groups,Pacific J. Math. 168 (1995), no. 2, 207–215. MR1339950 [4] I. Assem, D. Simson, and A. Skowro´nski, Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. MR2197389 [5] A. Bergmann, Formen auf Modulnuber ¨ kommutativen Ringen beliebiger Charakteristik (German), J. Reine Angew. Math. 219 (1965), 113–156, DOI 10.1515/crll.1965.219.113. MR0190167 [6] A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer- Verlag, New York, 1991. MR1102012 [7] A. Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188, DOI 10.2307/1970150. MR0123639 [8] R. Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248, DOI 10.2307/1969996. MR0089473 [9] E. Cline, B. Parshall, and L. Scott, Algebraic stratification in representation categories,J. Algebra 117 (1988), no. 2, 504–521, DOI 10.1016/0021-8693(88)90123-8. MR957457 [10] E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR961165 [11] E. Cline, B. Parshall, and L. Scott, Integral and graded quasi-hereditary algebras. I,J.Algebra 131 (1990), no. 1, 126–160, DOI 10.1016/0021-8693(90)90169-O. MR1055002 [12] E. Cline, B. Parshall, and L. Scott, The homological dual of a highest weight category,Proc. London Math. Soc. (3) 68 (1994), no. 2, 294–316, DOI 10.1112/plms/s3-68.2.294. MR1253506 [13] E. Cline, B. Parshall, and L. Scott, Stratifying endomorphism algebras,Mem.Amer.Math. Soc. 124 (1996), no. 591, viii+119, DOI 10.1090/memo/0591. MR1350891 [14] C. de Concini, D. Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), no. 2, 129–165, DOI 10.1007/BF01392548. MR558865 [15] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (1989), no. 2, 280–291. MR987824 [16] V. Dlab, P. Heath, and F. Marko, Quasi-heredity of endomorphism algebras,C.R.Math. Rep. Acad. Sci. Canada 16 (1994), no. 6, 277–282. MR1321690 [17] M. Domokos, S. G. Kuzmin, and A. N. Zubkov, Rings of matrix invariants in positive charac- teristic, J. Pure Appl. Algebra 176 (2002), no. 1, 61–80, DOI 10.1016/S0022-4049(02)00117-2. MR1930966 [18] M. Domokos and P. E. Frenkel, Mod 2 indecomposable orthogonal invariants, Adv. Math. 192 (2005), no. 1, 209–217, DOI 10.1016/j.aim.2004.04.005. MR2122284 [19] S. Donkin, Rational representations of algebraic groups, Lecture Notes in Mathematics, vol. 1140, Springer-Verlag, Berlin, 1985. Tensor products and filtration. MR804233 [20] S. Donkin, Invariants of several matrices, Invent. Math. 110 (1992), no. 2, 389–401, DOI 10.1007/BF01231338. MR1185589 [21] S. Donkin, Invariant functions on matrices, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 1, 23–43, DOI 10.1017/S0305004100075757. MR1188816 [22] P. Doubilet, G.-C. Rota, and J. Stein, On the foundations of combinatorial theory. IX. Combi- natorial methods in invariant theory, Studies in Appl. Math. 53 (1974), 185–216. MR0498650 145 146 BIBLIOGRAPHY [23] V. Drensky, Computing with matrix invariants, Math. Balkanica (N.S.) 21 (2007), no. 1-2, 141–172. MR2350726 [24] E. Formanek, The invariants of n × n matrices, Invariant theory, Lecture Notes in Math., vol. 1278, Springer, Berlin, 1987, pp. 18–43, DOI 10.1007/BFb0078804. MR924163 [25] E. Formanek, The polynomial identities and invariants of n × n matrices, CBMS Regional Conference Series in Mathematics, vol. 78, Published for the Conference Board of the Math- ematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991. MR1088481 [26] W. Fulton and J. Harris, Representation theory: A first course, Readings in Mathematics. Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR1153249 [27] J. A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR606556 [28] M.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us