Hausdorff on Ordered Sets

Hausdorff on Ordered Sets

Hausdorff o n Ordered Set s a 3 o x: OH Felix Hausdorff i n Greifswald, 1914-192 1 Universitats-und Landesbibliothek Bonn, Hss.-Abt. NL Hausdorff: Kapse l 65: Nr. 06 https://doi.org/10.1090/hmath/025 zwvrvwc^ • SOURCE S Hausdorff o n Ordered Set s J. M. Plotkin Editor Translated by J. M. Plotki n America n Mathematica l Societ y Londo n Mathematica l Societ y Editorial Boar d American Mathematica l Societ y Londo n Mathematica l Societ y Joseph W . Daube n Ale x D . D . Crai k Peter Dure n Jerem y J . Gra y Karen Parshall , Chai r Pete r Neuman n Michael I . Rose n Robi n Wilson , Chai r Original Germa n tex t translate d b y J . M . Plotki n The articl e Sum ofH\ sets b y Feli x Hausdorff, originall y published a s "Summe n vo n Ni - Mengen", Fundament a Mathematica e XXV I (1936 ) i s reprinted b y permissio n o f Instytu t Matematyczny Polskie j Akademi i Nauk . 2000 Mathematics Subject Classification. Primar y 01A75 , 01A60 , 03-03 , 06-03 , 26-03 . For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/hmath-25 Library o f Congres s Cataloging-in-Publicatio n Dat a Hausdorff, Felix , 1868-1942 . [Selections. English . 2005 ] Hausdorff o n ordere d set s / J . M . Plotkin , edito r ; translated b y J . M . Plotkin . p. cm . — (Histor y o f mathematics, ISS N 0899-242 8 ; v. 25 ) Includes bibliographica l references . ISBN 0-8218-3788- 5 (alk . paper ) 1. Ordered sets-History. 2 . Hausdorff, Felix , 1868-1942 . 3 . Logic, Symbolic and mathematical - History, 4 . Lattic e theorv-History . 5 . Functions-History . I . Plotkin , J . M . (Jaco b M.) , 1941 - II. Title . III . Serie s QA171.48.H38 200 5 511.3/2-dc21 200504532 8 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitte d t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisition s Department, America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 200 5 b y the America n Mathematica l Society . Al l rights reserved . Printed i n the Unite d State s o f America . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the Unite d State s Government . @ Th e pape r use d i n this boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . The Londo n Mathematica l Societ y i s incorporated unde r Roya l Charte r and i s registered wit h th e Charit y Commissioners . Visit th e AM S hom e pag e a t http://www.ams.org / 7 6 5 4 3 2 1 1 0 09 0 8 0 7 0 6 0 5 To the memory of Felix Hausdorff ^>« i ^r '% *Jk Felix Hausdorff i n his study a t home, Bonn, June 8-14, 192 4 Universitats-und Landesbibliothe k Bonn , Hss.-Abt. NL Hausdorff: Kapse l 65: Nr. 29 Contents Preface Selected Hausdorf f Bibliograph y Introduction t o "Abou t a Certain Kin d o f Ordered Sets " About a Certain Kin d o f Ordered Set s [ H 1901b ] Introduction t o "Th e Concep t o f Power i n Se t Theory " The Concep t o f Power i n Se t Theor y [ H 1904a ] Introduction t o "Investigation s int o Orde r Type s I , II, III" Investigations int o Orde r Type s [ H 1906b ] I. The Power s o f Order Type s II. Th e Highe r Continu a III. Homogeneou s Type s o f the Secon d Infinit e Cardinalit y Introduction t o "Investigation s int o Orde r Type s IV , V " Investigations int o Orde r Type s [ H 1907a ] IV. Homogeneou s Type s o f Cardinality o f the Continuu m V. O n Pantachie Type s Introduction t o "Abou t Dens e Orde r Types " About Dens e Orde r Type s [ H 1907b ] Introduction t o "Th e Fundamentals o f a Theory o f Ordered Sets " The Fundamentals o f a Theory o f Ordered Set s [ H 1908 ] Introduction t o "Graduatio n b y Final Behavior " Graduation b y Final Behavio r [ H 1909a ] Appendix. Sum s o f N i Set s [ H 1936b ] Bibliography This page intentionally left blank Preface Introduction As the nineteent h centur y wa s ending, Geor g Canto r (1845-1918 ) pub - lished hi s ow n Summa Theologica fo r se t theory . Thi s two-par t work , en - titled Beitrdge zur Begriindung der transfiniten Mengenlehre, appeare d i n 1895 an d 189 7 i n volume s 4 6 an d 49 , respectively , o f Mathematisch e An - nalen. Th e secon d installmen t o f Beitrdge turne d ou t t o b e Cantor' s las t published wor k on set theory. Thoug h Beitrdge coul d wel l serve as a primer on basi c se t theory , i t als o seeme d unfinished . Fundamenta l question s re - mained. Ar e al l cardinal s comparable ? Ca n al l set s b e well-ordered ? Ar e there just tw o possibilities fo r th e cardinalitie s o f infinite set s o f reals? Ye t in some cosmically just wa y this work marked a fitting endin g fo r a journey that bega n with the bread an d butter questio n o f uniqueness o f representa - tions o f functions b y trigonometric serie s and ended i n the realm o f pure se t theory. The yea r 189 7 als o sa w Cantor' s contribution s gai n officia l an d publi c recognition fro m hi s peers. Th e First Internationa l Congres s o f Mathemati- cians took place in Zurich in August o f 1897 , and Canto r wa s in attendance. In a major address , th e Zuric h mathematicia n Adol f Hurwit z (1859-1919) , who wa s on e o f the congress' s organizers , devote d considerabl e spac e to a n exegesis o f Cantor' s ordina l number s an d thei r applicatio n t o th e analysi s of closed point sets . Hurwit z propounde d Cantor' s wor k a s the basi s fo r a n investigation o f analytic functions i n terms o f their set s o f singularities.1 A t this same congress, Jacques Hadamard (1865-1963 ) gave a short talk entitle d Sur certaines applications possibles de la theorie des ensembles. The next international congress was held in Paris in August 1900 . There , David Hilbert (1862-1943 ) gave the famous address in which, after a provoca- tive meditatio n o n th e esthetic s o f mathematical problem s an d o n th e cri - teria fo r admissibl e solutions , h e liste d twenty-thre e problem s whos e solu - tions woul d advanc e th e entir e enterpris e o f mathematics. 2 Th e firs t thre e 1 Uber die Entwickelung der allgemeinen Theorie der analytischen Funktionen in neurer Zeit, Verhandlunge n de s ersten internationalen Mathematiker-Kongresse s i n Zuric h vom 9 . bi s 11 . August 189 7 (Leipzig : Teubner), 1898 , 91-112 . Hurwitz' s discussio n o f Cantor's wor k appear s o n pp. 94-97 . 2Because o f time constraints , Hilber t mentione d onl y ten problem s i n hi s actua l ad - dress: thre e fro m foundations , fou r fro m arithmeti c an d algebra , an d thre e fro m functio n theory. Al l twenty-three problem s ar e i n th e printe d version : Mathematische Probleme, ix X PREFACE problems deal t wit h foundations , an d proble m No . 1 was labelle d Cantors Problem von der Mdchtigkeit des Continuums. A s its title indicates, the firs t problem call s fo r a proof o f what i s now termed Cantor' s Wea k Continuu m Hypothesis: ther e ar e only tw o possible cardinalities fo r the infinit e subset s of th e continuum , tha t o f th e se t o f natura l number s an d tha t o f th e en - tire se t o f reals .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us