Advanced Mathematics

Advanced Mathematics

MSc FM, MTF, QF Induction Programme Advanced Mathematics Academic year 2010/2011 Lecture notes prepared by Laura Ballotta and George Harrison Section I Linear Algebra Differential Calculus Integral Calculus Difference and Differential Equations Table Content 1 LINEAR ALGEBRA .................................................................................................................................... 5 1.1. WHAT IS A MATRIX?................................................................................................................................. 5 1.2. SPECIAL TYPES OF MATRICES .................................................................................................................... 6 1.2.1. Vectors............................................................................................................................................ 6 1.2.2. Square matrix.................................................................................................................................. 6 1.2.3. Diagonal matrix .............................................................................................................................. 7 1.2.4. Identity Matrix................................................................................................................................ 7 1.3. MATRIX OPERATIONS ............................................................................................................................... 7 1.3.1 Adding and subtracting matrices .................................................................................................... 7 1.3.2 Scalar multiplication....................................................................................................................... 8 1.3.3. Transpose of a Matrix..................................................................................................................... 8 1.3.4. Vector multiplication ...................................................................................................................... 9 1.3.5 Matrix multiplication .................................................................................................................... 10 1.3.6 Properties of matrix multiplication ............................................................................................... 12 1.4. THE DETERMINANT................................................................................................................................. 13 1.4.1. How to find the determinant of a (2 x 2) matrix ........................................................................... 13 1.4.2. The determinant of a (3 x 3) matrix .............................................................................................. 14 1.4.3. Method of cofactors in determining determinants ........................................................................ 14 1.4.4. Properties of Determinants ........................................................................................................... 17 1.5. INVERSE OF A MATRIX............................................................................................................................. 18 1.5.1. Definition of an inverse matrix..................................................................................................... 18 1.5.2. How to find the inverse of a square matrix................................................................................... 18 1.6. TRACE OF A MATRIX............................................................................................................................... 19 1.7. SYSTEM OF LINEAR EQUATIONS ............................................................................................................. 20 1.8. PARTITIONED MATRICES......................................................................................................................... 22 1.9. VECTOR SPACES ...................................................................................................................................... 22 1.9.1 Rank of a matrix ........................................................................................................................... 25 1.10 EIGENVALUES AND EIGENVECTORS ................................................................................................... 26 1.10.1 General results for characteristic roots and vectors ...................................................................... 28 1.10.2 Further results on determining the rank of a matrix.................................................................... 29 1.11 DEFINITE MATRICES .......................................................................................................................... 29 2. DIFFERENTIAL CALCULUS .................................................................................................................. 32 2.1. DIFFERENTIATION ................................................................................................................................... 32 2.1.1. Definitions .................................................................................................................................... 32 2.1.2. Rules of Differentiation ................................................................................................................ 35 2.1.3. Derivatives of Exponential and logarithmic functions.................................................................. 37 2.1.4. Higher order derivatives............................................................................................................... 38 2.2. APPLICATIONS OF DERIVATIVES ............................................................................................................. 39 2.2.1. Taylor and Maclaurin Series......................................................................................................... 39 2.2.2. Increasing and decreasing functions ............................................................................................. 41 2.2.3. Concavity and Convexity.............................................................................................................. 42 2.2.4. First derivative test for relative extremum.................................................................................... 44 2.2.5. Second derivative test for relative extremum................................................................................ 45 2.2.6. The Nth-derivative test................................................................................................................. 46 2.2.7. Economic applications of derivatives ........................................................................................... 46 3. DIFFERENTIAL CALCULUS (THE MULTIVARIATE CASE) ............................................................. 53 3.1. MULTIVARIATE FUNCTIONS .................................................................................................................... 53 3.2 LIMITS AND CONTINUITY......................................................................................................................... 53 3.3 DIFFERENTIATION ................................................................................................................................... 55 3.4 APPLICATION OF DIFFERENTIATION ........................................................................................................ 61 3.4.1 Critical Values of Bivariate Functions.......................................................................................... 61 3.4.2. Critical Points of Multivariate Functions...................................................................................... 64 3.4.3. Constrained Optimisation ............................................................................................................. 67 4 INTEGRAL CALCULUS........................................................................................................................... 72 4.1. INTEGRATION.......................................................................................................................................... 72 2 4.1.1. Definite and Indefinite Integrals ................................................................................................... 72 4.1.2. Properties of definite integrals...................................................................................................... 74 4.1.3. Rules of Integration - Indefinite Integral ...................................................................................... 75 4.1.4. Auxiliary Conditions..................................................................................................................... 79 4.2. APPLICATIONS OF INTEGRALS ................................................................................................................. 79 4.2.1. Deriving Totals (Revenue/Cost) from Marginals (Revenue/Cost)................................................ 79 4.2.2. Present Value of Cashflows.......................................................................................................... 80 4.2.3. Measuring Probabilities ................................................................................................................ 81 4.3 MULTIPLE INTEGRATION......................................................................................................................... 81 4.3.1. Double Integral of a Function of Two Variables ..........................................................................81

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    123 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us