Alternatives for the production of propene oxide Citation for published version (APA): Perez Ferrandez, D. M. (2015). Alternatives for the production of propene oxide. Technische Universiteit Eindhoven. Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 06. Oct. 2021 Alternatives for the Production of Propene Oxide PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties, in het openbaar te verdedigen op donderdag 12 februari om 16:00 uur. door Dulce María Pérez Ferrández geboren te A Coruña, Spanje Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotiecommissie is als volgt: voorzitter: prof.dr.ir. R.A.J. Janssen 1e promotor: prof.dr.ir. J.C. Schouten copromotor: dr.ir. T.A. Nijhuis leden: prof.dr. K. Seshan (Twente University) prof.dr. J.H. Bitter (Wageningen University) prof.dr.ir. G.M.W. Kroesen adviseur: dr. M.H.J.M. de Croon To my family This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO) and partly funded by the Ministry of Economic Affairs (project number 10745) Alternatives for the Production of Propene Oxide Dulce María Pérez Ferrández Technische Universiteit Eindhoven, 2015. A catalogue record is available from the Eindhoven University of Technology Library ISBN: 978-90-386-3775-4 Cover design by Jacobo Parga, Dulce M. Pérez Ferrández and Paul Verspaget (Verspaget&Bruinink), using SEM and TEM images taken by Carlo Buijs. Printed at Ipskamp Drukkers Table of Contents 1 Introduction……………………………………………………………………… 1 1.1 Propene oxide: uses and industrial production……………………… 1 1.1.1 The chlorohydrin process (CHPO)……………………………. 2 1.1.2 The hydroperoxide processes (PO/TBA, SMPO, CHP)……. 3 1.1.3 Hydrogen peroxide-based epoxidation………………………. 5 1.1.4 Comparison of existing technologies and other alternatives………………………………………………………. 6 1.2 Hydrogen Peroxide to Propene Oxide (HPPO)………………………. 6 1.2.1 Titanium silicalite-1 (TS-1) …………………………………… 6 1.2.2 Reaction: Active sites and kinetics…………………………… 7 1.2.3 Hydrogen peroxide……………………………………………… 10 1.2.3.1 Synthesis of hydrogen peroxide.. …………………. 10 1.2.3.2 Decomposition………………………………………… 14 1.2.4 HPPO: Process integration…………………………………….. 15 1.3 Potential alternatives for the production of PO…………………….. 18 1.3.1 DSHP/HPPO: Direct synthesis of Hydrogen peroxide/HPPO…………………………….…………………….. 18 1.3.2 HOPO: Direct synthesis with hydrogen and oxygen………. 19 1.3.3 DOPO: Direct epoxidation with molecular oxygen………… 22 1.3.4 Other alternatives………………………………………………. 23 1.4 Scope and outline of the thesis…………………………………………. 24 References………………………………………………………………………. 25 v Table of Contents 2 Gas phase epoxidation of propene with hydrogen peroxide vapor……. 33 2.1 Introduction……………………………………………………………… 34 2.2 Experimental……………………………………………………………. 37 2.2.1 Catalyst synthesis and characterization…………………… 37 2.2.2 Experimental setup……………………………………………. 37 2.2.3 Decomposition experiments………………………………… 38 2.2.4 Epoxidation experiments…………………………………….. 39 2.3 Results and discussion………………………………………………… 40 2.3.1 Hydrogen peroxide decomposition………………………… 40 2.3.2 Gas phase epoxidation……………………………………….. 43 2.4 Conclusions……………………………………………………………… 47 Appendix 2.A: TS-1 synthesis and characterization………………. 48 References………………………………………………………………………. 50 3 Microreactors for the liquid-phase epoxidation of propene: Coated vi capillary microchannel and fixed bed microreactor…………………….. 53 3.1 Introduction…………………………………………………………….. 54 3.2 Experimental…………………………………………………………… 56 3.2.1 Preparation and characterization of TS-1-coated capillaries and fixed-bed microreactor……………………… 56 3.2.2 Experimental setup……………………………………………. 59 3.2.3 Epoxidation of propene………………………………………. 60 3.3 Results and discussion…………………………………………………. 61 3.3.1 TS-1 coated capillary…..……………………………………… 61 3.3.2 Epoxidation in a fixed bed microreactor (FBMR) ………... 63 3.3.3 Epoxidation in a coated capillary microreactor (CCMR)… 66 3.3.4 Comparison between both types of microreactor…………. 69 vi Table of Contents 3.4 Conclusions……………………………………………………………… 70 3.5 Outlook……………………………………………………………………. 71 Appendix 3.A: Characterization of TS-1 powder…………………………. 71 Appendix 3.B: Mass transfer limitations…………………………………... 72 References………………………………………………………………………. 74 4 An integrated microreactor for the epoxidation of propene using a microplasma……………………………………………………………………. 77 4.1 Introduction ……………………………………………………………... 78 4.2 Experimental designs and methodologies…………………………... 82 4.2.1 Experimental Plasma Setups ……………………………….. 82 4.2.1.1 The Atmospheric Pressure Glow Discharge Reactor (APGD) ……………………………………. 83 4.2.1.2 The Dielectric Barrier Discharges (DBD I and DBD II) ……………………………………………… 85 4.2.2 Plasma power measurements ……………………………… 87 vii 4.2.3 Hydrogen Peroxide detection in the plasma source …….. 89 4.2.4 Epoxidation of propene with hydrogen peroxide …………. 91 4.2.4.1 Gas phase epoxidation setup …………………….. 91 4.2.4.2 Liquid phase epoxidation setup …………………. 93 4.2.5 Epoxidation experiments …………………………………….. 94 4.3 Results and Discussion………………………………………………… 96 4.3.1 Hydrogen peroxide production results …………………….. 96 4.3.2 Results of the epoxidation of propene ……………………… 99 4.3.3 Experimental combination of plasma reactor and epoxidation reactor ……………………………………………. 101 4.3.4 Direct oxidation of propene in a plasma reactor …………. 101 4.4 Integrated process: Process options …………………………………. 102 vii Table of Contents 4.5 Summarizing discussion……………………………………………….. 107 4.5.1 Production of H2O2 in a microdischarge …………………… 107 4.5.2 Epoxidation of propene ………………………………………. 108 4.5.3 Recommendations and Economic Evaluation……………... 109 4.6 Conclusions ……………………………………………………………… 113 References………………………………………………………………………. 113 5 Kinetics of the selective oxidation of propene with O2 over Au-Ti catalyst in the presence of water……………………………………………. 117 5.1 Introduction……………………………………………………………… 118 5.2 Experimental…………………………………………………………….. 121 5.2.1 Catalyst synthesis and characterization…………………… 121 5.2.2 Catalytic testing……………………………………………….. 124 5.3 Results and discussion…………………………………………………. 125 5.3.1 Catalyst characterization…………………………………….. 125 viii 5.3.1.1 Au/Ti-SiO2…………………………………………… 125 5.3.1.2 Au/TS-1……………………………………………… 127 5.3.2 Epoxidation with H2 + O2…………………………………… 132 5.3.2.1 Au/TS-1……………………………………………… 132 5.3.2.2 Au/Ti-SiO2…………………………………………… 136 5.3.3 Epoxidation with O2 and water 139 5.3.3.1 Au/TS-1……………………………………………… 139 5.3.3.2 Au/Ti-SiO2…………………………………………… 147 5.3.4 Kinetic study……………………………………………………. 152 5.3.4.1 Au/TS-1……………………………………………… 152 5.3.4.2 Acrolein formation over Au/Ti-SiO2……………… 169 5.4 Summarizing discussion……………………………………………….. 175 viii Table of Contents 5.5 Conclusions………………………………………………………………. 178 5.6 Outlook……………………………………………………………………. 179 Appendix 5.A: Internal and external mass transfer limitations……….. 179 Appendix 5.B: Derivation of the kinetic expression……………………… 181 Appendix 5.C: Catalytic results for the epoxidation over Au/TS-1…….. 187 References………………………………………………………………………. 189 6 Selective propene oxidation to acrolein by gold dispersed on a Cu- containing MgCr2O4 spinel support………………………………………… 193 6.1 Introduction……………………………………………………………… 194 6.2 Experimental……………………………………………………………. 197 6.2.1 Catalyst synthesis and characterization…………………… 197 6.2.2 Oxidation experiments………………………………………... 198 6.3 Results and discussion…………………………………………………. 199 6.3.1 Catalyst characterization…………………………………….. 199 ix 6.3.2 Catalytic experiments…………………………………………. 201 6.3.2.1 Influence of the residence time…………………… 203 6.3.2.2 Effect of hydrogen co-feeding……………………... 205 6.3.2.3 Reaction with N2O………………………………….
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages243 Page
-
File Size-